Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DNA repair enzyme makes mistakes to save lives of cells

21.10.2004


Its two-step handiwork described in The EMBO Journal as most efficient of any enzyme



A newly discovered enzyme described by University of Pittsburgh researchers in a study published online today, is believed to play a key role in maintaining the integrity of a cell’s genetic information – the basis by which the life of a cell or species is preserved – by allowing its DNA to be replicated despite discovery of a mishap on the sequence that it corrects with a new mistake. Its sophisticated yet quick-fix tactics, employed at a most critical time, when typically damage can halt replication altogether, may save the cell from near certain death. Harnessing its unique capabilities could have implications for treating some cancers.

In the paper posted on the Web site of The EMBO Journal, an official journal of the European Molecular Biology Organization, the researchers describe how DNA polymerase Q, or POL-Q, has the exceptional ability to bypass damaged spots in the DNA sequence that are caused by a cell’s normal wear and tear or other abuses. In addition, it is the only known enzyme that orchestrates not only one, but two steps involved in bypassing common types of DNA damage.


POL-Q is one of 15 different DNA polymerases in human cells. These specialized enzymes carry out the duplication, proofreading and repair of DNA. DNA is a double-stranded molecule that contains genes necessary for the production of proteins, which in turn determine all aspects of a cell’s structure, function and movement. Each strand consists of nucleotides with any combination of four nitrogen-containing bases – A, T, C and G, for short – that when in proper sequence are paired with those on the opposing, complementary strand. About 1,000 nucleotides are copied per second, and mistakes in the process are rare. Problems in the sequence sometimes arise, such as a wrong or missing base or one that is damaged. If a problem somehow evades detection, it can prevent DNA from being replicated or result in a mutation in the copied DNA.

The researchers found POL-Q’s role is to detect late-stage mishaps in the replication process, specifically those that are found at a juncture called the replication fork, just before separation of the copied parent and daughter strand takes place. Rather than stop the process altogether, which would result in the cell not surviving, POL-Q comes to the rescue by performing its two-step handiwork. First, it replaces the site of a missing or chemically changed base by inserting a new base – even if its choice from one of the four bases is not complementary to the base opposite. In a correct sequence strand, A always pairs with T and G always pairs with C, but POL-Q, the researchers report, seems to favor adding an A regardless of the missing base.

Remarkably, unlike other enzymes, POL-Q engages in a second step. Perhaps as a precaution against its own "mistake" delaying or stopping replication, POL-Q adds a second base next to the first one it inserted, thereby extending the chain as if all is normal. "POL-Q’s two-step actions of insertion and extension, essentially the work that would be performed by two enzymes, are the most efficient of any known DNA polymerase. While a mispaired base may in turn result in a mutation after replication, it seems to be a small price to pay for the cell’s survival," explained Richard D. Wood, Ph.D., professor of pharmacology and the Richard Cyert Chair of Molecular Oncology at the University of Pittsburgh School of Medicine and leader of the Molecular and Cellular Oncology Program at the University of Pittsburgh Cancer Institute (UPCI).

"Based on what we have learned, our impression of POL-Q is that it does what is necessary when emergency measures are required. One analogy would be duct tape, which in a pinch can be used to mend a torn piece of luggage, for example. POL-Q does what must be done when it encounters a lesion at the DNA replication fork. It’s an efficient strategy in a crisis," he added. Further study will be required to determine how POL-Q’s less-than-perfect workmanship is corrected by other DNA repair mechanisms before the DNA undergoes replication again.

There are many causes of DNA damage – the sun’s ultraviolet rays, environmental toxins, radiation from X-rays or agents in chemotherapy – and the source determines which enzyme is involved and its technique for repair. For instance, normal wear and tear on a cell can cause a base to break off the DNA strand, and enzymes, including POL-Q, repair the DNA by inserting bases where they are found missing. POL-Q also repairs bases that are damaged or chemically altered due to abuse or stress placed on the cell, such as from radiation or oxidants, free radicals that are byproducts of oxygen consumption.

When Dr. Wood and his colleagues first identified POL-Q last year they reported that because of its protein structure it belonged to the A family of polymerases, which are known for filling gaps during DNA replication. Now with a better understanding of how its role is to permit replication to proceed, the authors note in the current study that POL-Q’s behavior is more consistent with the Y family of polymerases that bypass damage. Indeed, comparisons of its protein sequence to other polymerases in the A family yielded an interesting find: Unlike its cousins, POL-Q has three extra spans of code. "Most likely, these extra parts of the protein sequence give POL-Q its unique ability to bypass damage with such great efficiency, albeit by making frequent errors. With the aid of computational biology methods, we will be performing more detailed biochemical analyses and structural studies to determine if our impressions are correct," said Mineaki Seki, Ph.D., research associate in the basic research division at UPCI and the paper’s first author.

Additional studies also will provide researchers with more insight into POL-Q’s role in preserving the integrity of the genome. Research performed at the Jackson Laboratory and published in Molecular and Cellular Biology in tandem with Pitt’s study in The EMBO Journal, already suggests POL-Q’s importance. Knockout mice without the ability to express POL-Q had abnormal immature red blood cells. And when these mice were bred with mice without a second gene, ATM, which is important for regulating DNA’s response to radiation, few survived. Those that did were severely impaired, proof of an unstable genome. "We know that the ATM gene is intimately related to cancer lymphomas, so based on this group’s findings, it seems that an impairment or lack of POL-Q function may be tied to a cancer-prone pathway. This is certainly worth further investigation," commented Dr. Wood.

In addition to Drs. Wood and Seki, other authors of the The EMBO Journal paper are Lee Wei Yang, and Ivet Bahar, Ph.D., from the University of Pittsburgh’s Center for Computational Biology and Bioinformatics and department of molecular genetics and biochemistry; Anthony Schuffert, of the University of Pittsburgh Cancer Institute; and Chikahide Masutani, Ph.D., and Shigenori Iwai, Ph.D., from Osaka University, Japan.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>