Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early life stress can inhibit development of brain-cell communication zones, UCI study finds

21.10.2004


Ecological research, 30 feet down - Jon Witman, professor of biology, photographs an 18-by-24-inch sample of a Caribbean rock wall. He and his team produced and analyzed more than 1,500 such marine images from around the world.


Latitude matters - A photographic sample taken from a ledge off Cape Town, South Africa, is packed with sponges, anemones, soft corals, sea fans and bryzoans, whose name, taken from the Greek, means “moss animals.”


Finding may reveal clues to origins of autism, other human brain disorders

High stress levels during infancy and early childhood can lead to the poor development of communication zones in brain cells – a condition found in mental disorders such as autism, depression and mental retardation.

These are the findings of Dr. Tallie Z. Baram and her collaborators at the UC Irvine College of Medicine, Neurocrine Biosciences, Inc., and the Max Planck Institute of Psychiatry. For the first time, the researchers have identified how increased amounts of a key messenger for stress, the neuropeptide CRH, can inhibit the normal growth of dendrites, which are branch-like protrusions of neurons that send and receive messages from other brain cells.



The researchers believe CRH ultimately may be responsible for these poorly developed zones in brain cells. Results of their study appear in the current online early edition of the Proceedings of the National Academy of Sciences. “These findings may prove to be highly relevant for understanding the origins of several human brain disorders, and they also point to some potential preventive treatments,” said Baram, the Danette Shepard Chair in Neurological Studies. “The activation of stress hormones and molecules seems to initiate a complex cascade of brain effects that is related to depression and dementia. This study reveals a novel role of CRH in this cascade.”

Communication among brain cells is the foundation of cognitive processes such as learning and memory. In several human brain disorders where learning and similar thought processes are abnormal, dendrites in the hippocampus – where learning and memory occurs – have been found to be small or poorly developed. Normally, CRH is found in the hippocampus, and small amounts that are released during stress may improve cellular communication.

But when the investigators in this study grew the hippocampus of baby rats in a dish and administered higher doses of CRH to the cultured hippocampus, the dendrites matured poorly. In turn, the group found exuberant dendritic growth in hippocampus tissue in which CRH could not exert any effect because the CRH receptor was eliminated via genetic engineering. “Thus, we had two lines of evidence suggesting that too much CRH in the developing hippocampus might lead to the abnormal dendrites,” said Baram, a pediatric neurologist and neuroscientist. “The good news is that we were able to prevent this effect in the lab.”

To do this, the researchers used a selective blocker of the CRH receptors and were able to reverse the actions of CRH, which led to well-developed brain-cell dendrites. But Baram warns that much more research is needed to see if this blocker can work in animal models or in humans.

The Baram group is continuing its study to learn if CRH is involved in adult dendrite atrophy. In previous studies, several research groups have found that chronic stress causes dendrite atrophy in adults, but it is not known if CRH plays a role.

Yuncai Chen, Roland A. Bender, Kristen L. Brunson and Jörn K. Pomper from the Baram group at UCI collaborated with Dimitri E. Grigoriadis of Neurocrine and Wolfgang Wurst of the Max Planck Institute on the study. The National Institutes of Health provided funding support.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>