Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early life stress can inhibit development of brain-cell communication zones, UCI study finds

21.10.2004


Ecological research, 30 feet down - Jon Witman, professor of biology, photographs an 18-by-24-inch sample of a Caribbean rock wall. He and his team produced and analyzed more than 1,500 such marine images from around the world.


Latitude matters - A photographic sample taken from a ledge off Cape Town, South Africa, is packed with sponges, anemones, soft corals, sea fans and bryzoans, whose name, taken from the Greek, means “moss animals.”


Finding may reveal clues to origins of autism, other human brain disorders

High stress levels during infancy and early childhood can lead to the poor development of communication zones in brain cells – a condition found in mental disorders such as autism, depression and mental retardation.

These are the findings of Dr. Tallie Z. Baram and her collaborators at the UC Irvine College of Medicine, Neurocrine Biosciences, Inc., and the Max Planck Institute of Psychiatry. For the first time, the researchers have identified how increased amounts of a key messenger for stress, the neuropeptide CRH, can inhibit the normal growth of dendrites, which are branch-like protrusions of neurons that send and receive messages from other brain cells.



The researchers believe CRH ultimately may be responsible for these poorly developed zones in brain cells. Results of their study appear in the current online early edition of the Proceedings of the National Academy of Sciences. “These findings may prove to be highly relevant for understanding the origins of several human brain disorders, and they also point to some potential preventive treatments,” said Baram, the Danette Shepard Chair in Neurological Studies. “The activation of stress hormones and molecules seems to initiate a complex cascade of brain effects that is related to depression and dementia. This study reveals a novel role of CRH in this cascade.”

Communication among brain cells is the foundation of cognitive processes such as learning and memory. In several human brain disorders where learning and similar thought processes are abnormal, dendrites in the hippocampus – where learning and memory occurs – have been found to be small or poorly developed. Normally, CRH is found in the hippocampus, and small amounts that are released during stress may improve cellular communication.

But when the investigators in this study grew the hippocampus of baby rats in a dish and administered higher doses of CRH to the cultured hippocampus, the dendrites matured poorly. In turn, the group found exuberant dendritic growth in hippocampus tissue in which CRH could not exert any effect because the CRH receptor was eliminated via genetic engineering. “Thus, we had two lines of evidence suggesting that too much CRH in the developing hippocampus might lead to the abnormal dendrites,” said Baram, a pediatric neurologist and neuroscientist. “The good news is that we were able to prevent this effect in the lab.”

To do this, the researchers used a selective blocker of the CRH receptors and were able to reverse the actions of CRH, which led to well-developed brain-cell dendrites. But Baram warns that much more research is needed to see if this blocker can work in animal models or in humans.

The Baram group is continuing its study to learn if CRH is involved in adult dendrite atrophy. In previous studies, several research groups have found that chronic stress causes dendrite atrophy in adults, but it is not known if CRH plays a role.

Yuncai Chen, Roland A. Bender, Kristen L. Brunson and Jörn K. Pomper from the Baram group at UCI collaborated with Dimitri E. Grigoriadis of Neurocrine and Wolfgang Wurst of the Max Planck Institute on the study. The National Institutes of Health provided funding support.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>