Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical engineers at case develop first sliver-sized sensor to monitor glucose levels

19.10.2004


It’s a good thing that the now eight-year-old son of Miklos Gratzl, a Case Western Reserve University biomedical engineer, got a splinter in his finger one day – at least for the sake of science. With apologies to his son – instead of an "Ouch!" moment, for Gratzl it was more of an "A-ha!" moment.

As he was removing it from his son’s finger, the splinter gave him an idea: Since it showed no open wound in the skin, he thought to himself that a sensor like a sliver would be ideal for all kinds of biomedical applications since the skin would heal very quickly above it and after that no track infection can occur.

The associate professor of biomedical engineering and researcher at the Case School of Engineering has developed for the first time a "sliver-sensor" – a fully functional, minimally invasive, microscopic new monitor that can be placed just under the skin and seen with the naked eye for very accurate, continuous examination of glucose level for diabetics and other bodily fluid levels – with the help of simple color changes.



Colors in the tiny sensor, which is smaller than the tip of a pencil, gradually change from orange (low glucose levels) to green and then to dark blue as levels increase. A deep, darker blue signifies the highest glucose level that can occur in diabetics. Gratzl and co-principal investigator Koji Tohda, a biomedical engineering researcher at Case, believe the implications for improving the quality of life of diabetics would be substantial.

"Many diabetics could greatly benefit from this technology, freeing them from having to take samples from their fingers several times a day to monitor blood sugar levels," Gratzl said. "The monitor could also help doctors with close monitoring of electrolytes, metabolites and other vital biochemicals in the body, primarily those of critically ill patients."

Gratzl and Tohda’s research also may benefit our future astronauts. The research is being funded by NASA and the John Glenn Biomedical Engineering Consortium at NASA Glenn Research Center, and partially by Vision Sensors LLC, a Cleveland-based startup.
Astronauts face the possibility of becoming ill while in space. Accidents also happen. In such cases doctors on Earth have to make a diagnosis from a distance of several thousand miles. This new sensor, continually monitoring such vital markers as ions and metabolites in an astronaut’s interstitial fluid may make it easier and quicker for doctors to decide the best intervention and therapy. To date, no such continuous, minimally invasive monitor for ions and metabolites has been available.

Tohda’s expertise in the area of optode technology helped point the researchers in the direction of using color changing molecules to detect ionic levels as they vary with changes in glucose. According to Gratzl, this approach is much more modern and powerful technology than the traditional color dyes, which are difficult to "immobilize" inside the sensor, Gratzl says. Traditional dyes tend to diffuse and "get lost" in tissue and cannot be changed or "tuned" to best adapt to being inside a sensor. So Tohda suggested they create a sliver sensor that would generate color change instead of an electrical current. "We also thought that color can be seen better from the outside if the sliver is not too deep, and if it gets distorted by the skin this can be corrected by using a white spot inside the sensor that does not change color," Gratzl said.

The sensor, which is one to two millimeters long and 100 to 200 micrometers wide, penetrates the skin easily and painlessly so users may insert or reinsert it themselves when needed and can be operational at least for several days at a time. It can be monitored by eyesight and by electronic telemetry using a watchlike device worn by the person for data processing. Sensing itself does not require a battery, or the collection of blood samples, and needs very little energy if a watchlike signal processor is used. With no wires across the skin, there is no deterioration of the skin surface or other areas inside the skin and no danger of track infection. The device also is advantageous because no electrical currents are going through the body.

Gratzl says lab testing and in vivo testing of the sensor in laboratory animals has been going well. He also reports the sliver sensor could be ready for human testing within six months. "So far, the sensor is performing beyond expectation in preliminary laboratory tests," Gratzl said. "Over the years, there has been a lack of good, quality devices for diabetics to monitor glucose – something they must do every day of their lives – devices that are reliable, relatively low-cost and minimally invasive."

Members of the John Glenn Biomedical Engineering Consortium include Case, NASA Glenn Research Center, the Cleveland Clinic Foundation, University Hospitals of Cleveland and the National Center for Microgravity Research.

Laura Massie | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>