Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical engineers at case develop first sliver-sized sensor to monitor glucose levels

19.10.2004


It’s a good thing that the now eight-year-old son of Miklos Gratzl, a Case Western Reserve University biomedical engineer, got a splinter in his finger one day – at least for the sake of science. With apologies to his son – instead of an "Ouch!" moment, for Gratzl it was more of an "A-ha!" moment.

As he was removing it from his son’s finger, the splinter gave him an idea: Since it showed no open wound in the skin, he thought to himself that a sensor like a sliver would be ideal for all kinds of biomedical applications since the skin would heal very quickly above it and after that no track infection can occur.

The associate professor of biomedical engineering and researcher at the Case School of Engineering has developed for the first time a "sliver-sensor" – a fully functional, minimally invasive, microscopic new monitor that can be placed just under the skin and seen with the naked eye for very accurate, continuous examination of glucose level for diabetics and other bodily fluid levels – with the help of simple color changes.



Colors in the tiny sensor, which is smaller than the tip of a pencil, gradually change from orange (low glucose levels) to green and then to dark blue as levels increase. A deep, darker blue signifies the highest glucose level that can occur in diabetics. Gratzl and co-principal investigator Koji Tohda, a biomedical engineering researcher at Case, believe the implications for improving the quality of life of diabetics would be substantial.

"Many diabetics could greatly benefit from this technology, freeing them from having to take samples from their fingers several times a day to monitor blood sugar levels," Gratzl said. "The monitor could also help doctors with close monitoring of electrolytes, metabolites and other vital biochemicals in the body, primarily those of critically ill patients."

Gratzl and Tohda’s research also may benefit our future astronauts. The research is being funded by NASA and the John Glenn Biomedical Engineering Consortium at NASA Glenn Research Center, and partially by Vision Sensors LLC, a Cleveland-based startup.
Astronauts face the possibility of becoming ill while in space. Accidents also happen. In such cases doctors on Earth have to make a diagnosis from a distance of several thousand miles. This new sensor, continually monitoring such vital markers as ions and metabolites in an astronaut’s interstitial fluid may make it easier and quicker for doctors to decide the best intervention and therapy. To date, no such continuous, minimally invasive monitor for ions and metabolites has been available.

Tohda’s expertise in the area of optode technology helped point the researchers in the direction of using color changing molecules to detect ionic levels as they vary with changes in glucose. According to Gratzl, this approach is much more modern and powerful technology than the traditional color dyes, which are difficult to "immobilize" inside the sensor, Gratzl says. Traditional dyes tend to diffuse and "get lost" in tissue and cannot be changed or "tuned" to best adapt to being inside a sensor. So Tohda suggested they create a sliver sensor that would generate color change instead of an electrical current. "We also thought that color can be seen better from the outside if the sliver is not too deep, and if it gets distorted by the skin this can be corrected by using a white spot inside the sensor that does not change color," Gratzl said.

The sensor, which is one to two millimeters long and 100 to 200 micrometers wide, penetrates the skin easily and painlessly so users may insert or reinsert it themselves when needed and can be operational at least for several days at a time. It can be monitored by eyesight and by electronic telemetry using a watchlike device worn by the person for data processing. Sensing itself does not require a battery, or the collection of blood samples, and needs very little energy if a watchlike signal processor is used. With no wires across the skin, there is no deterioration of the skin surface or other areas inside the skin and no danger of track infection. The device also is advantageous because no electrical currents are going through the body.

Gratzl says lab testing and in vivo testing of the sensor in laboratory animals has been going well. He also reports the sliver sensor could be ready for human testing within six months. "So far, the sensor is performing beyond expectation in preliminary laboratory tests," Gratzl said. "Over the years, there has been a lack of good, quality devices for diabetics to monitor glucose – something they must do every day of their lives – devices that are reliable, relatively low-cost and minimally invasive."

Members of the John Glenn Biomedical Engineering Consortium include Case, NASA Glenn Research Center, the Cleveland Clinic Foundation, University Hospitals of Cleveland and the National Center for Microgravity Research.

Laura Massie | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>