Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical engineers at case develop first sliver-sized sensor to monitor glucose levels

19.10.2004


It’s a good thing that the now eight-year-old son of Miklos Gratzl, a Case Western Reserve University biomedical engineer, got a splinter in his finger one day – at least for the sake of science. With apologies to his son – instead of an "Ouch!" moment, for Gratzl it was more of an "A-ha!" moment.

As he was removing it from his son’s finger, the splinter gave him an idea: Since it showed no open wound in the skin, he thought to himself that a sensor like a sliver would be ideal for all kinds of biomedical applications since the skin would heal very quickly above it and after that no track infection can occur.

The associate professor of biomedical engineering and researcher at the Case School of Engineering has developed for the first time a "sliver-sensor" – a fully functional, minimally invasive, microscopic new monitor that can be placed just under the skin and seen with the naked eye for very accurate, continuous examination of glucose level for diabetics and other bodily fluid levels – with the help of simple color changes.



Colors in the tiny sensor, which is smaller than the tip of a pencil, gradually change from orange (low glucose levels) to green and then to dark blue as levels increase. A deep, darker blue signifies the highest glucose level that can occur in diabetics. Gratzl and co-principal investigator Koji Tohda, a biomedical engineering researcher at Case, believe the implications for improving the quality of life of diabetics would be substantial.

"Many diabetics could greatly benefit from this technology, freeing them from having to take samples from their fingers several times a day to monitor blood sugar levels," Gratzl said. "The monitor could also help doctors with close monitoring of electrolytes, metabolites and other vital biochemicals in the body, primarily those of critically ill patients."

Gratzl and Tohda’s research also may benefit our future astronauts. The research is being funded by NASA and the John Glenn Biomedical Engineering Consortium at NASA Glenn Research Center, and partially by Vision Sensors LLC, a Cleveland-based startup.
Astronauts face the possibility of becoming ill while in space. Accidents also happen. In such cases doctors on Earth have to make a diagnosis from a distance of several thousand miles. This new sensor, continually monitoring such vital markers as ions and metabolites in an astronaut’s interstitial fluid may make it easier and quicker for doctors to decide the best intervention and therapy. To date, no such continuous, minimally invasive monitor for ions and metabolites has been available.

Tohda’s expertise in the area of optode technology helped point the researchers in the direction of using color changing molecules to detect ionic levels as they vary with changes in glucose. According to Gratzl, this approach is much more modern and powerful technology than the traditional color dyes, which are difficult to "immobilize" inside the sensor, Gratzl says. Traditional dyes tend to diffuse and "get lost" in tissue and cannot be changed or "tuned" to best adapt to being inside a sensor. So Tohda suggested they create a sliver sensor that would generate color change instead of an electrical current. "We also thought that color can be seen better from the outside if the sliver is not too deep, and if it gets distorted by the skin this can be corrected by using a white spot inside the sensor that does not change color," Gratzl said.

The sensor, which is one to two millimeters long and 100 to 200 micrometers wide, penetrates the skin easily and painlessly so users may insert or reinsert it themselves when needed and can be operational at least for several days at a time. It can be monitored by eyesight and by electronic telemetry using a watchlike device worn by the person for data processing. Sensing itself does not require a battery, or the collection of blood samples, and needs very little energy if a watchlike signal processor is used. With no wires across the skin, there is no deterioration of the skin surface or other areas inside the skin and no danger of track infection. The device also is advantageous because no electrical currents are going through the body.

Gratzl says lab testing and in vivo testing of the sensor in laboratory animals has been going well. He also reports the sliver sensor could be ready for human testing within six months. "So far, the sensor is performing beyond expectation in preliminary laboratory tests," Gratzl said. "Over the years, there has been a lack of good, quality devices for diabetics to monitor glucose – something they must do every day of their lives – devices that are reliable, relatively low-cost and minimally invasive."

Members of the John Glenn Biomedical Engineering Consortium include Case, NASA Glenn Research Center, the Cleveland Clinic Foundation, University Hospitals of Cleveland and the National Center for Microgravity Research.

Laura Massie | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>