Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery might improve design, effectiveness of anti-cancer drugs

19.10.2004


Working with an enzyme that degrades anti-cancer drugs in humans, University of North Carolina at Chapel Hill biochemists and colleagues have made a discovery that they believe eventually could help improve such drugs’ design and effectiveness.



The scientists have shown that the enzyme protein can be made to "fly through the vapor phase" -- from which solvent water is totally absent -- without changing its structure.

When a solution containing the enzyme was introduced as a fine spray into a vacuum created in a mass spectrometer in the laboratory, normal solvent molecules were completely evaporated, leaving bare, charged molecules known as ions, the researchers said. The protein ions were trapped in the extremely high vacuum for seconds, but in the new experiments, a single water molecule remained undisturbed, which was a surprise since no one ever saw that before. "This suggests how we might change an inhibitor molecule to make it fit the enzyme more perfectly and hence be more effective in blocking that enzyme’s action in destroying anticancer drugs," said Dr. Richard V. Wolfenden, Alumni Distinguished professor of biochemistry and biophysics at the UNC School of Medicine.


The experiments involving the enzyme cytidine deaminase, which is derived from bacteria and many other sources, mark the first time that scientists have detected a water molecule inside a protein molecule by mass spectrometry, he said. A report on the research appears in the latest issue of the Proceedings of the National Academy of Sciences. Besides Wolfenden, UNC participants include lead author Dr. Christoph H. Borchers, assistant professor of biochemistry and biophysics and faculty director of the UNC Michael Hooker Proteomics Core Facility, and doctoral student Gottfried K. Schroeder. Wolfenden and Borchers are members of UNC’s Lineberger Comprehensive Cancer Center.

"When the active site of this enzyme binds to what is called the active site of a well-fitting inhibitor molecule, it also binds a single water molecule, which appears to be trapped in a small gap left by the inhibitor," Wolfenden said. "The sequestering of the water molecule from its surroundings is evident from the fact that this protein ‘water bottle’ flies for many seconds through a nearly perfect vacuum into which the water molecule would evaporate instantly if it were exposed to the surroundings."

Inside the mass spectrometer manufactured by Bruker Daltronics, Inc., the vacuum was comparable to the vacuum found in intergalactic space, he said. Wolfenden said the presence of the water-filled gap hints at how an inhibitor might be improved further -- by expanding it to fill the gap -- which is important in designing drugs. "Moreover, this specific enzyme is known to inactivate the anticancer agent cytarabine," he said. "That inactivation limits the effectiveness of cytarabine in cancer tissue such as in non-Hodgkins lymphoma, several forms of leukemia and other cancers. By protecting cytarabine against degradation, a powerful inhibitor of the enzyme cytidine deaminase might be used in combination with cytarabine for cancer chemotherapy." The UNC scientists are now exploring that possibility in further laboratory studies, Wolfenden said.

Since it is highly sensitive and accurate, mass spectrometry is a major analytical tool capable of sequencing peptides and allowing researchers to identify and characterize proteins at their physiological level. The instrument in which the experiments were performed is located at the North American headquarters of Bruker Daltonics in Billerica, Mass.

The Michael Hooker Proteomics Core Facility will soon acquire one of the sophisticated mass spectrometers, said Borchers, also a member of UNC’s Center of Environmental Health and Susceptibility.

Other authors of the new paper are Dr. Victor E. Marquez of the National Cancer Institute, Dr. Steven A. Short of GlaxoSmithKline, Dr. Mark J. Snider of the College of Wooster, and Dr. J. Paul Speir of Bruker Daltonics.

The National Institutes of Health supported the research.

David Williamson | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>