Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists discover new way to fix defective gene

19.10.2004


Method may help halt A-T, cancer, other genetic diseases



UCLA scientists have devised a novel way to repair one of the genetic mutations that cause ataxia-telangiectasia, (A-T), a life-shortening disorder that devastates the neurological and immune systems of one in 40,000 young children. Reported Oct. 18 in the Proceedings of the National Academy of Sciences, the findings could hold far-reaching implications for treating A-T, cancer and other genetic diseases.

Often misdiagnosed as cerebral palsy, A-T usually strikes children before age 2 and confines them to a wheelchair by age 10. Many lose their ability to speak and die in childhood. One in three children also develop lymphoma or leukemia. Adults who carry the mutated A-T gene (ATM), including up to 15 percent of breast-cancer patients, are eight times more likely to develop cancer than the general population.


Dr. Richard Gatti, professor of pathology and laboratory medicine, and Chih-Hung Lai, Ph.D., a postdoctoral researcher at the David Geffen School of Medicine at UCLA, created a new strategy for tricking the ATM gene into overlooking certain types of mutations called premature termination codons (PTCs). "PTCs are like irregular stop signs located in the middle of the block," explained Gatti. "They stop traffic before it reaches the intersection. We made these stop signs invisible, so traffic continues until it sees the proper stop sign at the end of the corner."

In normal cells, termination codons alert the cell’s protein-reading machinery that a protein has reached full length and completed copying. In the mutated genes of A-T patients, PTCs halt the copying of proteins too early, resulting in shortened and unstable ATM proteins. "Unstable proteins create abnormal cells that can’t function properly, producing all of the neurological and immune problems that afflict A-T patients," said Lai, the study’s first author.

Lai and Gatti noted that A-T patients whose cells contain no ATM protein suffer from a severe form of the disease, while patients whose cells hold some ATM protein have a milder form of the disorder. The scientists hypothesized that increasing ATM protein in the cells, even by modest amounts, might alleviate A-T patients’ symptoms or perhaps eliminate the disease entirely. The team used a group of antibiotics called aminoglycosides to make the PTCs invisible to the cell’s protein-reading machinery. After bathing in the antibiotics for four days, cells that earlier contained little or no ATM proteins had grown full-length ATM proteins.

When the researchers tested the treated A-T cells, they also discovered that the cells had converted to normal appearance and begun to function normally. The cells started churning out ATM protein, which provides energy by switching on other cells. "About one in six A-T patients has a PTC type of mutation," noted Lai. "We hope that our findings will provide a solid first step to gene-based therapy for this group." According to Gatti, many aminoglycosides are already approved for clinical use by the FDA and could quickly become available for testing in A-T clinical trials. "Our next step will be to build an ATM animal model and see how it responds to aminoglycoside therapy," said Gatti. "We will also screen other antibiotics and drugs that may restore ATM cell function even better. We only need one successful candidate to make a huge difference in the lives of children with A-T."

Because the ATM gene also increases cancer risk, Gatti is hopeful that his laboratory findings may hold implications for cancer diagnosis and treatment. "If we are able to restore A-T cell function, we may be able to halt the spread of the tumor," said Gatti. "By correcting the mutation, the cancer may stop growing or recede entirely."

Everyone carries two copies of the A-T gene, but one copy is defective in A-T carriers. Children who inherit a defective gene from each parent will develop the disease. Gatti’s laboratory was the first to locate the ATM on chromosome 11 and then worked to successfully clone it.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>