Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA scientists discover new way to fix defective gene


Method may help halt A-T, cancer, other genetic diseases

UCLA scientists have devised a novel way to repair one of the genetic mutations that cause ataxia-telangiectasia, (A-T), a life-shortening disorder that devastates the neurological and immune systems of one in 40,000 young children. Reported Oct. 18 in the Proceedings of the National Academy of Sciences, the findings could hold far-reaching implications for treating A-T, cancer and other genetic diseases.

Often misdiagnosed as cerebral palsy, A-T usually strikes children before age 2 and confines them to a wheelchair by age 10. Many lose their ability to speak and die in childhood. One in three children also develop lymphoma or leukemia. Adults who carry the mutated A-T gene (ATM), including up to 15 percent of breast-cancer patients, are eight times more likely to develop cancer than the general population.

Dr. Richard Gatti, professor of pathology and laboratory medicine, and Chih-Hung Lai, Ph.D., a postdoctoral researcher at the David Geffen School of Medicine at UCLA, created a new strategy for tricking the ATM gene into overlooking certain types of mutations called premature termination codons (PTCs). "PTCs are like irregular stop signs located in the middle of the block," explained Gatti. "They stop traffic before it reaches the intersection. We made these stop signs invisible, so traffic continues until it sees the proper stop sign at the end of the corner."

In normal cells, termination codons alert the cell’s protein-reading machinery that a protein has reached full length and completed copying. In the mutated genes of A-T patients, PTCs halt the copying of proteins too early, resulting in shortened and unstable ATM proteins. "Unstable proteins create abnormal cells that can’t function properly, producing all of the neurological and immune problems that afflict A-T patients," said Lai, the study’s first author.

Lai and Gatti noted that A-T patients whose cells contain no ATM protein suffer from a severe form of the disease, while patients whose cells hold some ATM protein have a milder form of the disorder. The scientists hypothesized that increasing ATM protein in the cells, even by modest amounts, might alleviate A-T patients’ symptoms or perhaps eliminate the disease entirely. The team used a group of antibiotics called aminoglycosides to make the PTCs invisible to the cell’s protein-reading machinery. After bathing in the antibiotics for four days, cells that earlier contained little or no ATM proteins had grown full-length ATM proteins.

When the researchers tested the treated A-T cells, they also discovered that the cells had converted to normal appearance and begun to function normally. The cells started churning out ATM protein, which provides energy by switching on other cells. "About one in six A-T patients has a PTC type of mutation," noted Lai. "We hope that our findings will provide a solid first step to gene-based therapy for this group." According to Gatti, many aminoglycosides are already approved for clinical use by the FDA and could quickly become available for testing in A-T clinical trials. "Our next step will be to build an ATM animal model and see how it responds to aminoglycoside therapy," said Gatti. "We will also screen other antibiotics and drugs that may restore ATM cell function even better. We only need one successful candidate to make a huge difference in the lives of children with A-T."

Because the ATM gene also increases cancer risk, Gatti is hopeful that his laboratory findings may hold implications for cancer diagnosis and treatment. "If we are able to restore A-T cell function, we may be able to halt the spread of the tumor," said Gatti. "By correcting the mutation, the cancer may stop growing or recede entirely."

Everyone carries two copies of the A-T gene, but one copy is defective in A-T carriers. Children who inherit a defective gene from each parent will develop the disease. Gatti’s laboratory was the first to locate the ATM on chromosome 11 and then worked to successfully clone it.

Elaine Schmidt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>