Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists discover new way to fix defective gene

19.10.2004


Method may help halt A-T, cancer, other genetic diseases



UCLA scientists have devised a novel way to repair one of the genetic mutations that cause ataxia-telangiectasia, (A-T), a life-shortening disorder that devastates the neurological and immune systems of one in 40,000 young children. Reported Oct. 18 in the Proceedings of the National Academy of Sciences, the findings could hold far-reaching implications for treating A-T, cancer and other genetic diseases.

Often misdiagnosed as cerebral palsy, A-T usually strikes children before age 2 and confines them to a wheelchair by age 10. Many lose their ability to speak and die in childhood. One in three children also develop lymphoma or leukemia. Adults who carry the mutated A-T gene (ATM), including up to 15 percent of breast-cancer patients, are eight times more likely to develop cancer than the general population.


Dr. Richard Gatti, professor of pathology and laboratory medicine, and Chih-Hung Lai, Ph.D., a postdoctoral researcher at the David Geffen School of Medicine at UCLA, created a new strategy for tricking the ATM gene into overlooking certain types of mutations called premature termination codons (PTCs). "PTCs are like irregular stop signs located in the middle of the block," explained Gatti. "They stop traffic before it reaches the intersection. We made these stop signs invisible, so traffic continues until it sees the proper stop sign at the end of the corner."

In normal cells, termination codons alert the cell’s protein-reading machinery that a protein has reached full length and completed copying. In the mutated genes of A-T patients, PTCs halt the copying of proteins too early, resulting in shortened and unstable ATM proteins. "Unstable proteins create abnormal cells that can’t function properly, producing all of the neurological and immune problems that afflict A-T patients," said Lai, the study’s first author.

Lai and Gatti noted that A-T patients whose cells contain no ATM protein suffer from a severe form of the disease, while patients whose cells hold some ATM protein have a milder form of the disorder. The scientists hypothesized that increasing ATM protein in the cells, even by modest amounts, might alleviate A-T patients’ symptoms or perhaps eliminate the disease entirely. The team used a group of antibiotics called aminoglycosides to make the PTCs invisible to the cell’s protein-reading machinery. After bathing in the antibiotics for four days, cells that earlier contained little or no ATM proteins had grown full-length ATM proteins.

When the researchers tested the treated A-T cells, they also discovered that the cells had converted to normal appearance and begun to function normally. The cells started churning out ATM protein, which provides energy by switching on other cells. "About one in six A-T patients has a PTC type of mutation," noted Lai. "We hope that our findings will provide a solid first step to gene-based therapy for this group." According to Gatti, many aminoglycosides are already approved for clinical use by the FDA and could quickly become available for testing in A-T clinical trials. "Our next step will be to build an ATM animal model and see how it responds to aminoglycoside therapy," said Gatti. "We will also screen other antibiotics and drugs that may restore ATM cell function even better. We only need one successful candidate to make a huge difference in the lives of children with A-T."

Because the ATM gene also increases cancer risk, Gatti is hopeful that his laboratory findings may hold implications for cancer diagnosis and treatment. "If we are able to restore A-T cell function, we may be able to halt the spread of the tumor," said Gatti. "By correcting the mutation, the cancer may stop growing or recede entirely."

Everyone carries two copies of the A-T gene, but one copy is defective in A-T carriers. Children who inherit a defective gene from each parent will develop the disease. Gatti’s laboratory was the first to locate the ATM on chromosome 11 and then worked to successfully clone it.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>