Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excess dietary fat accelerates breast cancer by altering the activity of a group of genes

18.10.2004


Breast cancer is the most frequent form of cancer in women around the world. The fact that this cancer is more frequent in the developed world suggests that life style and environmental factors may be involved. Nutritional factors are particularly important, given people’s continual exposure through dietary habits. Among them, dietary fats are the main element involved in breast cancer. Fats do not cause cancer, however some of them, such as animal fats or certain vegetable fats, accelerate the clinical development of the disease, while blue fish and olive oil appear to delay its development.



A research team headed by Dr. Eduard Escrich, lecturer in the Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia at the Universitat Autònoma de Barcelona and head of the Grup Multidisciplinari per a l’Estudi del Càncer de Mama (Multi-disciplinary group on Breast Cancer Studies) has established a specific mechanism by which some of these fats favour the development of breast cancer. According to research, diets rich in the polyunsaturated fatty acids n-6 reduce the expression of a group of four genes, three of which are related to cellular differentiation (a-2u-globulin, VDUP1 and H19) and the fourth of which is a sequence with a totally unknown function (known as EST Rn.32385), thereby accelerating the proliferation of tumours.

The scientists have reached these conclusions from results, obtained using microarrays, that compare the expression of 6,000 genes in breast cancer tumours in animals fed with n-6 fat-rich diets and in animals with low-fat diets. The tumours in the rats with the fat-rich diets proliferated, on average, more than the others, apparently associated with a lesser expression of the four genes. According to the UAB researchers, in an article published in Molecular Carcinogenesis, “this is the first time that the influence of a fat-rich diet on the expression of these genes has been investigated. The discovery opens a new line of research into its implication in changes on the state of cellular differentiation induced by dietary lipids in breast cancer tumours and the degree of malignity of the cancer.


In general, the research carried out by the Grup Multidisciplinari per a l’Estudi del Càncer de Mama aims to establish possible activity of common elements in human diet, beyond the nutritional value, which may permit scientific opinions to be formulated on the health of the population of the risk of disease. It is therefore involved in the field of secondary and especially primary prevention of breast cancer.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>