Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peakadilly nv biopharmaceutical firm created

18.10.2004


The Flanders Interuniversity Institute for Biotechnology (VIB) and Ghent University have started up a new biopharmaceutical company named Peakadilly nv. Peakadilly will develop and market a new generation of molecular diagnostics − so-called protein bio-markers − using innovative proteomics technology developed by the research group under the direction of Joël Vandekerckhove. The markers can be used in the development of medicines, making the process much more efficient, effective and economical. The bio-markers will also enable doctors to detect diseases sooner and, because many medicines work effectively only with a limited group of patients, doctors will also be able to verify whether a particular medicine will work for certain patients. Peakadilly will be led by Koen Kas, who has been closely involved in the development of the technology platform.



Health care tailored to the patient

Today, it takes an average of 800 million euro and about 12 years to develop a new drug. Among other things, the time-consuming and expensive clinical studies test the safety and effectiveness of a potential medicine. Frequently, the studies indicate that the drug is not really effective at all, or only for a small number of patients. At present, nothing exists for measuring whether a candidate drug is truly effective during development. Bio-markers can bridge this gap and thus substantially lower the development costs and time.


Bio-markers will also make it possible to target therapies specifically to the patients for whom they are successful. Most drugs in the field of oncology, for example, help only a limited number of patients. Bio-markers will enable the appropriate therapy to be selected for the patient − a step toward patient-specific medicine. The bio-markers will also enable earlier detection of life-threatening diseases like cancer.

The impact of bio-markers for the patient − and, indirectly, for the social security system − will be profound. Whereas bio-markers are suitable and desired in every disease field, Peakadilly will initially focus on applications in oncology − operating at the interface of diagnostics and therapeutics.

The product of innovative proteomics technology

Proteins are responsible for all life processes in our cells − regulating the digestion of our food, communication between cells, and so on. Defects in (the activity of) particular proteins are at the basis of many diseases (such as diseases of the muscles and cancer), and the development of medicines focuses on restoring or positively affecting the proteins’ activity. Proteomics − the study of the proteome, or proteins in their entirety – is of crucial importance for this. The technology enables one to uncover all the differences between the proteome of a sick person and that of a healthy person, and between the proteome of a patient who reacts positively to a drug and of a patient who is not helped by it.

Proteomics can also provide insight into the origin and progression of diseases. The analysis of the effect of a drug on the proteome enables researchers to understand which protein(s) the drug acts upon. Until recently, however, there was no efficient way to study the proteome systematically. Pioneering research under the direction of Joël Vandekerckhove (Scientific Director of a VIB research department at Ghent University) has led to a technology that, for the first time, enables thousands of proteins to be analyzed in a systematic way.

Peakadilly will apply this proteomics technology to identify specific proteins and protein profiles that are related to a disease or the activity of a candidate drug. Then, with this knowledge, Peakadilly will develop the bio-markers. An advantage of the technology is that it can be used on blood. Blood samples are routinely used, of course, for diagnosing a number of (infectious) diseases − but the current techniques obtain only a limited amount of information from the sample. Peakadilly’s bio-markers should make it possible to detect diseases more quickly (giving medical treatment a much greater chance of success) and to gear the therapy to the patient more effectively.

Start-up

Since the invention of the technology in 2001, the research team and VIB’s technology transfer team have been working on the development of a patented technology and product platform. When the technology and its product potential were presented in an early stage to a select group of (bio)pharmaceutical firms, the need for such a technology and products proved to be so large that R&D collaborations at a value of around 2 million euro were quickly established with 3 well-known firms.

These collaborations made it possible to house the technology in a new start-up enterprise: Peakadilly. The new company will be led by Koen Kas, who was a member of VIB’s tech-transfer team and fully involved in the development of the platform. The new CEO holds a doctorate in the bio-medical sciences, is an instructor at Ghent and Harvard Universities, and has previously held management positions in research at Tibotec, Virco and Galapagos.

Peakadilly will start out in the VIB bio-incubator, located in the Technology Park of Ghent University in Zwijnaarde. Among others, 4 VIB employees − all with extensive company experience − are transferring to Peakadilly to give the company a flying start. This start-up team will then be enlarged further. In addition, the company maintains its good relationship with the VIB department at Ghent University, where the technology was first developed and where it is being further developed with a team of 12 researchers.

Rudy Dekesyer | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>