Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targets for combating infections in medical implants

18.10.2004


Navarre researcher, Jaione Valle Turrillas, has identified two genes that could help as targets for pharmaceutical drugs that fight the Staphylococcus aureus “one of the bacteria which causes most infections in medical implants”. The results of her research have been published in her PhD thesis, "The role of the global regulators SarA and õB in Staphylococcus aureus biofilm formation", defended at the Public University of Navarre.



Bacterias a thousand time more resistant

The bacteria Staphylococcus aureus is one of those which are associated with greater frequency of infections in implants carried out in hospitals. Usually, the bacteria adheres to the surface of the implant, “where microorganism communities are formed that grow on being absorbed into a matrix of polysaccharides, commonly known as biofilm”, according to Jaione Valle.


Once inside this biofilm, the bacteria can be “up to a thousand times more resistant to antibiotic treatments”. Because of this, infections associated with bacterial biofilms are “difficult to eradicate” and, in the majority of cases, “can only be resolved with substitution of the contaminated implant”, she adds.

However, the Navarre biologist has identified two genes “essential for the formation process and maintenance of the biofilm”, that can be used as “promising targets of activity” for new pharmaceutical drugs that “either avoid the forming of the biofilm produced by the said bacteria, or destabilise a biofilm already formed in infections associated with medical implants”.

These are the global regulators SarA and õB. The first is a gene involved in the synthesis of the main exopolysaccharide of the biofilm matrix and, in its absence, “produces a decrease in the amount of exopolysaccharide produced and so the bacteria stops forming biofilm”, the authoress points out.

Moreover, on investigating the role of other regulators in the process of the biofilm formation, it was found that, in the absence of õB, bacteria appear that “had lost their ability to form biofilm”.

Genetics of the biofilm

For the genetic investigation of the process of the biofilm generation, the ability for biofilm formation in clinically isolated strains of S. aureus was analysed first, using a number of laboratory tests. The results of this analysis showed that a high number of analysed strains were able to form biofilm - 80% in fact. Likewise, it was found that biofilm formation with this bacteria “depends on the conditions of the culture used”, Jaione Valle points out.

Of the strains analysed, “clinical strain 15981” was selected as a model bacteria for the molecular study of biofilm formation with S. aureus. Thus, with the aim of identifying the genes involved in the biofilm formation, a collection of 10,000 mutants was generated “in which a transposon provoked, in each of the mutants, the inactivation of a gene in the chromosome in a random manner”, explains the PhD researcher. In this way, the ability to form biofilm in each of the 10,000 mutants was analysed and it was observed that “only three mutants had lost this ability”.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>