Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targets for combating infections in medical implants

18.10.2004


Navarre researcher, Jaione Valle Turrillas, has identified two genes that could help as targets for pharmaceutical drugs that fight the Staphylococcus aureus “one of the bacteria which causes most infections in medical implants”. The results of her research have been published in her PhD thesis, "The role of the global regulators SarA and õB in Staphylococcus aureus biofilm formation", defended at the Public University of Navarre.



Bacterias a thousand time more resistant

The bacteria Staphylococcus aureus is one of those which are associated with greater frequency of infections in implants carried out in hospitals. Usually, the bacteria adheres to the surface of the implant, “where microorganism communities are formed that grow on being absorbed into a matrix of polysaccharides, commonly known as biofilm”, according to Jaione Valle.


Once inside this biofilm, the bacteria can be “up to a thousand times more resistant to antibiotic treatments”. Because of this, infections associated with bacterial biofilms are “difficult to eradicate” and, in the majority of cases, “can only be resolved with substitution of the contaminated implant”, she adds.

However, the Navarre biologist has identified two genes “essential for the formation process and maintenance of the biofilm”, that can be used as “promising targets of activity” for new pharmaceutical drugs that “either avoid the forming of the biofilm produced by the said bacteria, or destabilise a biofilm already formed in infections associated with medical implants”.

These are the global regulators SarA and õB. The first is a gene involved in the synthesis of the main exopolysaccharide of the biofilm matrix and, in its absence, “produces a decrease in the amount of exopolysaccharide produced and so the bacteria stops forming biofilm”, the authoress points out.

Moreover, on investigating the role of other regulators in the process of the biofilm formation, it was found that, in the absence of õB, bacteria appear that “had lost their ability to form biofilm”.

Genetics of the biofilm

For the genetic investigation of the process of the biofilm generation, the ability for biofilm formation in clinically isolated strains of S. aureus was analysed first, using a number of laboratory tests. The results of this analysis showed that a high number of analysed strains were able to form biofilm - 80% in fact. Likewise, it was found that biofilm formation with this bacteria “depends on the conditions of the culture used”, Jaione Valle points out.

Of the strains analysed, “clinical strain 15981” was selected as a model bacteria for the molecular study of biofilm formation with S. aureus. Thus, with the aim of identifying the genes involved in the biofilm formation, a collection of 10,000 mutants was generated “in which a transposon provoked, in each of the mutants, the inactivation of a gene in the chromosome in a random manner”, explains the PhD researcher. In this way, the ability to form biofilm in each of the 10,000 mutants was analysed and it was observed that “only three mutants had lost this ability”.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>