Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targets for combating infections in medical implants

18.10.2004


Navarre researcher, Jaione Valle Turrillas, has identified two genes that could help as targets for pharmaceutical drugs that fight the Staphylococcus aureus “one of the bacteria which causes most infections in medical implants”. The results of her research have been published in her PhD thesis, "The role of the global regulators SarA and õB in Staphylococcus aureus biofilm formation", defended at the Public University of Navarre.



Bacterias a thousand time more resistant

The bacteria Staphylococcus aureus is one of those which are associated with greater frequency of infections in implants carried out in hospitals. Usually, the bacteria adheres to the surface of the implant, “where microorganism communities are formed that grow on being absorbed into a matrix of polysaccharides, commonly known as biofilm”, according to Jaione Valle.


Once inside this biofilm, the bacteria can be “up to a thousand times more resistant to antibiotic treatments”. Because of this, infections associated with bacterial biofilms are “difficult to eradicate” and, in the majority of cases, “can only be resolved with substitution of the contaminated implant”, she adds.

However, the Navarre biologist has identified two genes “essential for the formation process and maintenance of the biofilm”, that can be used as “promising targets of activity” for new pharmaceutical drugs that “either avoid the forming of the biofilm produced by the said bacteria, or destabilise a biofilm already formed in infections associated with medical implants”.

These are the global regulators SarA and õB. The first is a gene involved in the synthesis of the main exopolysaccharide of the biofilm matrix and, in its absence, “produces a decrease in the amount of exopolysaccharide produced and so the bacteria stops forming biofilm”, the authoress points out.

Moreover, on investigating the role of other regulators in the process of the biofilm formation, it was found that, in the absence of õB, bacteria appear that “had lost their ability to form biofilm”.

Genetics of the biofilm

For the genetic investigation of the process of the biofilm generation, the ability for biofilm formation in clinically isolated strains of S. aureus was analysed first, using a number of laboratory tests. The results of this analysis showed that a high number of analysed strains were able to form biofilm - 80% in fact. Likewise, it was found that biofilm formation with this bacteria “depends on the conditions of the culture used”, Jaione Valle points out.

Of the strains analysed, “clinical strain 15981” was selected as a model bacteria for the molecular study of biofilm formation with S. aureus. Thus, with the aim of identifying the genes involved in the biofilm formation, a collection of 10,000 mutants was generated “in which a transposon provoked, in each of the mutants, the inactivation of a gene in the chromosome in a random manner”, explains the PhD researcher. In this way, the ability to form biofilm in each of the 10,000 mutants was analysed and it was observed that “only three mutants had lost this ability”.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>