Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New targets for combating infections in medical implants


Navarre researcher, Jaione Valle Turrillas, has identified two genes that could help as targets for pharmaceutical drugs that fight the Staphylococcus aureus “one of the bacteria which causes most infections in medical implants”. The results of her research have been published in her PhD thesis, "The role of the global regulators SarA and õB in Staphylococcus aureus biofilm formation", defended at the Public University of Navarre.

Bacterias a thousand time more resistant

The bacteria Staphylococcus aureus is one of those which are associated with greater frequency of infections in implants carried out in hospitals. Usually, the bacteria adheres to the surface of the implant, “where microorganism communities are formed that grow on being absorbed into a matrix of polysaccharides, commonly known as biofilm”, according to Jaione Valle.

Once inside this biofilm, the bacteria can be “up to a thousand times more resistant to antibiotic treatments”. Because of this, infections associated with bacterial biofilms are “difficult to eradicate” and, in the majority of cases, “can only be resolved with substitution of the contaminated implant”, she adds.

However, the Navarre biologist has identified two genes “essential for the formation process and maintenance of the biofilm”, that can be used as “promising targets of activity” for new pharmaceutical drugs that “either avoid the forming of the biofilm produced by the said bacteria, or destabilise a biofilm already formed in infections associated with medical implants”.

These are the global regulators SarA and õB. The first is a gene involved in the synthesis of the main exopolysaccharide of the biofilm matrix and, in its absence, “produces a decrease in the amount of exopolysaccharide produced and so the bacteria stops forming biofilm”, the authoress points out.

Moreover, on investigating the role of other regulators in the process of the biofilm formation, it was found that, in the absence of õB, bacteria appear that “had lost their ability to form biofilm”.

Genetics of the biofilm

For the genetic investigation of the process of the biofilm generation, the ability for biofilm formation in clinically isolated strains of S. aureus was analysed first, using a number of laboratory tests. The results of this analysis showed that a high number of analysed strains were able to form biofilm - 80% in fact. Likewise, it was found that biofilm formation with this bacteria “depends on the conditions of the culture used”, Jaione Valle points out.

Of the strains analysed, “clinical strain 15981” was selected as a model bacteria for the molecular study of biofilm formation with S. aureus. Thus, with the aim of identifying the genes involved in the biofilm formation, a collection of 10,000 mutants was generated “in which a transposon provoked, in each of the mutants, the inactivation of a gene in the chromosome in a random manner”, explains the PhD researcher. In this way, the ability to form biofilm in each of the 10,000 mutants was analysed and it was observed that “only three mutants had lost this ability”.

Garazi Andonegi | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>