Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain how morphogens work

18.10.2004


Morphogens are molecules that play a role in the development of organs

Scientists at Cincinnati Children’s Hospital Medical Center believe they have answered some critical questions that address how signaling molecules, called morphogens, work. Morphogens are secreting signaling molecules that play a key role in the formation of the shape and size of organs. For example, these molecules play a role in determining the bean-like shape of human kidneys. But when these molecules malfunction, they can lead to organ defects and cancers. This study provides insights into the mechanisms of organogenesis and could have implications for treating organ defects and cancers.

For years scientists at Cincinnati Children’s and elsewhere have sought to determine how morphogens work. In a new study published in the October 15 issue of the journal Cell, Xinhua Lin, PhD, an assistant professor of developmental biology at Cincinnati Children’s, concluded that morphogens work by "diffusion." "These findings provide new insight into the understanding of the mechanisms that control the function of morphogens," Lin said. "In order to treat diseases related with morphogen malfunctions, scientists must first understand the mechanisms that trigger diseases. This understanding can lead to new insight into the possibility of developing new strategies to treat related diseases."



There are several groups of morphogens, but in his new paper, Dr. Lin focuses on TGF beta family molecules that function as morphogens. His interest is in learning how the TGF beta morphogen works.

Developmental biologists have considered and tested several theories that could explain how morphogens work. These theories include extracellular diffusion and transcytosis. In extracellular diffusion, it is suggested that morphogens move across cells by traveling across the surface of cells. Alternatively, the transcytosis model proposes that cells transfer morphogen molecules through endocytosis, which is the incorporation of substances into a cell by pinching off of the plasma membrane. The Lin study is based on the fruit fly model (Drosophila). He and his colleagues studied the fruit fly protein called Decapentaplegic (Dpp). Dpp is a morphogen molecule that is similar in structure to the human TGF beta protein.

Dpp functions as a morphogen that is instrumental in forming the wings of a fruit fly. The Lin lab demonstrated that Dpp morphogen molecules are mainly distributed on the cell surface, which suggests that Dpp morphogen moves by an extracellular diffusion mechanism. To prove this hypothesis, Lin and colleagues blocked cell endocytosis and examined Dpp morphogen movement. They found that inhibiting endocytosis disrupts the cell’s ability to transduce Dpp signaling, but does not block Dpp movement across cells.

This experiment allowed researchers to distinguish the role of endocytosis in Dpp signaling activity from Dpp movement, providing evidence that endocytosis is not required for Dpp morphogen movement, albeit it is essential for its signaling activity.

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>