Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain how morphogens work

18.10.2004


Morphogens are molecules that play a role in the development of organs

Scientists at Cincinnati Children’s Hospital Medical Center believe they have answered some critical questions that address how signaling molecules, called morphogens, work. Morphogens are secreting signaling molecules that play a key role in the formation of the shape and size of organs. For example, these molecules play a role in determining the bean-like shape of human kidneys. But when these molecules malfunction, they can lead to organ defects and cancers. This study provides insights into the mechanisms of organogenesis and could have implications for treating organ defects and cancers.

For years scientists at Cincinnati Children’s and elsewhere have sought to determine how morphogens work. In a new study published in the October 15 issue of the journal Cell, Xinhua Lin, PhD, an assistant professor of developmental biology at Cincinnati Children’s, concluded that morphogens work by "diffusion." "These findings provide new insight into the understanding of the mechanisms that control the function of morphogens," Lin said. "In order to treat diseases related with morphogen malfunctions, scientists must first understand the mechanisms that trigger diseases. This understanding can lead to new insight into the possibility of developing new strategies to treat related diseases."



There are several groups of morphogens, but in his new paper, Dr. Lin focuses on TGF beta family molecules that function as morphogens. His interest is in learning how the TGF beta morphogen works.

Developmental biologists have considered and tested several theories that could explain how morphogens work. These theories include extracellular diffusion and transcytosis. In extracellular diffusion, it is suggested that morphogens move across cells by traveling across the surface of cells. Alternatively, the transcytosis model proposes that cells transfer morphogen molecules through endocytosis, which is the incorporation of substances into a cell by pinching off of the plasma membrane. The Lin study is based on the fruit fly model (Drosophila). He and his colleagues studied the fruit fly protein called Decapentaplegic (Dpp). Dpp is a morphogen molecule that is similar in structure to the human TGF beta protein.

Dpp functions as a morphogen that is instrumental in forming the wings of a fruit fly. The Lin lab demonstrated that Dpp morphogen molecules are mainly distributed on the cell surface, which suggests that Dpp morphogen moves by an extracellular diffusion mechanism. To prove this hypothesis, Lin and colleagues blocked cell endocytosis and examined Dpp morphogen movement. They found that inhibiting endocytosis disrupts the cell’s ability to transduce Dpp signaling, but does not block Dpp movement across cells.

This experiment allowed researchers to distinguish the role of endocytosis in Dpp signaling activity from Dpp movement, providing evidence that endocytosis is not required for Dpp morphogen movement, albeit it is essential for its signaling activity.

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>