Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain how morphogens work

18.10.2004


Morphogens are molecules that play a role in the development of organs

Scientists at Cincinnati Children’s Hospital Medical Center believe they have answered some critical questions that address how signaling molecules, called morphogens, work. Morphogens are secreting signaling molecules that play a key role in the formation of the shape and size of organs. For example, these molecules play a role in determining the bean-like shape of human kidneys. But when these molecules malfunction, they can lead to organ defects and cancers. This study provides insights into the mechanisms of organogenesis and could have implications for treating organ defects and cancers.

For years scientists at Cincinnati Children’s and elsewhere have sought to determine how morphogens work. In a new study published in the October 15 issue of the journal Cell, Xinhua Lin, PhD, an assistant professor of developmental biology at Cincinnati Children’s, concluded that morphogens work by "diffusion." "These findings provide new insight into the understanding of the mechanisms that control the function of morphogens," Lin said. "In order to treat diseases related with morphogen malfunctions, scientists must first understand the mechanisms that trigger diseases. This understanding can lead to new insight into the possibility of developing new strategies to treat related diseases."



There are several groups of morphogens, but in his new paper, Dr. Lin focuses on TGF beta family molecules that function as morphogens. His interest is in learning how the TGF beta morphogen works.

Developmental biologists have considered and tested several theories that could explain how morphogens work. These theories include extracellular diffusion and transcytosis. In extracellular diffusion, it is suggested that morphogens move across cells by traveling across the surface of cells. Alternatively, the transcytosis model proposes that cells transfer morphogen molecules through endocytosis, which is the incorporation of substances into a cell by pinching off of the plasma membrane. The Lin study is based on the fruit fly model (Drosophila). He and his colleagues studied the fruit fly protein called Decapentaplegic (Dpp). Dpp is a morphogen molecule that is similar in structure to the human TGF beta protein.

Dpp functions as a morphogen that is instrumental in forming the wings of a fruit fly. The Lin lab demonstrated that Dpp morphogen molecules are mainly distributed on the cell surface, which suggests that Dpp morphogen moves by an extracellular diffusion mechanism. To prove this hypothesis, Lin and colleagues blocked cell endocytosis and examined Dpp morphogen movement. They found that inhibiting endocytosis disrupts the cell’s ability to transduce Dpp signaling, but does not block Dpp movement across cells.

This experiment allowed researchers to distinguish the role of endocytosis in Dpp signaling activity from Dpp movement, providing evidence that endocytosis is not required for Dpp morphogen movement, albeit it is essential for its signaling activity.

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>