Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini-Mouse is a bad mom

18.10.2004


Female mice that are abnormally small due to gene "knockout" technology are also bad mothers whose poor parenting skills cause their young to die within a day or two of birth, scientists report this week in the on-line edition of the Proceedings of the National Academy of Sciences.



Since Chawnshang Chang, Ph.D., cloned the gene for testicular orphan receptor 4 (TR4) 10 years ago, he and other scientists have tried to learn its function – scientists call it an "orphan" receptor because they don’t know what protein links up with it. So a team led by Chang, director of George Whipple Laboratory for Cancer Research at the University of Rochester Medical Center, knocked out the gene in mice, then watched what happened.

They found that many of the mice died before birth. Those that lived are markedly smaller than their normal counterparts: They’re born far smaller and then make up some of the difference as they grow, but generally they are about 20 to 30 percent smaller by the time they reach adulthood. The miniature mice are not as fertile as normal mice, having only about half the offspring as other mice.


Most visibly, the females have very bad parenting skills: They don’t build nests, nurse their young, or tend to their offspring, which die within a day or two as a result. "Basically, we observed mothers that don’t care for their pups," says post-doctoral associate Loretta Collins, Ph.D., who did much of the work along with Yi-Fen Lee, Ph.D., assistant professor of urology. "A normal mouse will gather its offspring and crouch over them and take care of them, but these "knockout" mice just left their pups scattered about the cage. "Our plans to further characterize behavior and gene expression in these animals will help us identify the target genes that are normally controlled by TR4 and contribute to regulation of specific behaviors," she adds.

Scientists have known that the receptor is present throughout tissues such as muscle, spleen, thyroid gland, the testes, and the cerebellum, but they didn’t expect that knocking out the receptor would have such broad effects. "TR4 is a master regulator that binds to other genes and turns on or blocks other genes," Chang says. "Now we know that it plays an important role in growth, development, and reproduction as well."

In addition to Chang, Collins, and Lee, other authors from Rochester include Cynthia A. Heinlein, Ning-Chun Liu, Yei-Tsung Chen, and Chih-Rong Shyr. The team also included Charles K. Meshul of the Oregon Health and Science University, Hideo Uno of the University of Wisconsin, and Kenneth A. Platt from Lexicon Genetics Inc. of Texas.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>