Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini-Mouse is a bad mom

18.10.2004


Female mice that are abnormally small due to gene "knockout" technology are also bad mothers whose poor parenting skills cause their young to die within a day or two of birth, scientists report this week in the on-line edition of the Proceedings of the National Academy of Sciences.



Since Chawnshang Chang, Ph.D., cloned the gene for testicular orphan receptor 4 (TR4) 10 years ago, he and other scientists have tried to learn its function – scientists call it an "orphan" receptor because they don’t know what protein links up with it. So a team led by Chang, director of George Whipple Laboratory for Cancer Research at the University of Rochester Medical Center, knocked out the gene in mice, then watched what happened.

They found that many of the mice died before birth. Those that lived are markedly smaller than their normal counterparts: They’re born far smaller and then make up some of the difference as they grow, but generally they are about 20 to 30 percent smaller by the time they reach adulthood. The miniature mice are not as fertile as normal mice, having only about half the offspring as other mice.


Most visibly, the females have very bad parenting skills: They don’t build nests, nurse their young, or tend to their offspring, which die within a day or two as a result. "Basically, we observed mothers that don’t care for their pups," says post-doctoral associate Loretta Collins, Ph.D., who did much of the work along with Yi-Fen Lee, Ph.D., assistant professor of urology. "A normal mouse will gather its offspring and crouch over them and take care of them, but these "knockout" mice just left their pups scattered about the cage. "Our plans to further characterize behavior and gene expression in these animals will help us identify the target genes that are normally controlled by TR4 and contribute to regulation of specific behaviors," she adds.

Scientists have known that the receptor is present throughout tissues such as muscle, spleen, thyroid gland, the testes, and the cerebellum, but they didn’t expect that knocking out the receptor would have such broad effects. "TR4 is a master regulator that binds to other genes and turns on or blocks other genes," Chang says. "Now we know that it plays an important role in growth, development, and reproduction as well."

In addition to Chang, Collins, and Lee, other authors from Rochester include Cynthia A. Heinlein, Ning-Chun Liu, Yei-Tsung Chen, and Chih-Rong Shyr. The team also included Charles K. Meshul of the Oregon Health and Science University, Hideo Uno of the University of Wisconsin, and Kenneth A. Platt from Lexicon Genetics Inc. of Texas.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>