Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intracellular protein localization involved in new tumor progression pathway

18.10.2004


Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis



As cancer progresses, cancer cells acquire the ability to become resistant to programmed-cell-death, called apoptosis. Understanding the molecular mechanisms involved in the regulation of apoptosis is key for developing proper cancer therapies. Survivin is a member of a family of proteins that are inhibitors of apoptosis (IAPs), but the means by which survivin inhibits apoptosis remains largely unknown. Dario Altieri and colleagues, from the University of Massachusetts Medical School, investigated the where survivin is located within the cell to see whether the cellular location is directly involved in the regulation of apoptosis and the establishment and progression of tumors.

The authors identified a specific mitochondrial pool of survivin that is released into the cytoplasm when a cell receives signals to undergo cell death. Once in the cytoplasm, survivin inhibits enzymes called caspases which are required for apoptosis, and in doing so, blocks apoptosis. The researchers showed that by selectively targeting survivin to the mitochondria this enhanced soft agar colony formation, which is a standard laboratory technique to test for cells that lack growth control and are potentially tumor forming. In mice, when the authors carried out such mitochondrial targeting of survivin, this resulted in increased tumor growth and eleimination of apoptosis. The data here demon-strate a novel pathway for apoptosis inhibition and tumor progression.

Laurie Goodman | EurekAlert!
Further information:
http://www.the-jci.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>