Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic identified as potential anti-cancer candidate

18.10.2004


Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics



A molecular mechanism that was formerly thought to be important only in bacteria has now been shown to be a potential target for an anticancer therapy based on antibiotic use. David Scheinberg and colleagues, at the Sloan-Kettering Institute, have been investigating an enzyme in humans that is similar to one in bacteria called peptide deformylase (Pdf) and have found that an antibiotic called actinonin, which inhibits the human Pdf, also inhibits tumor growth. Pdf was thought to be important only to bacteria and the bacterially-related organelles of cells of higher organisms.

Pdf is an enzyme that, during protein production, removes a modification called an N-formyl group from the first amino acid, a methionine, in the protein chain. While work began on the development of antibiotics against what was thought to be a bacterial-exclusive enzyme, genome-based data searches identified several classes of Pdf-like sequences in parasites, plants and mammals. Subsequent studies showed that the Pdfs were active both in culture and in the living organism, thus potentially derailing the usefulness of these antibiotics for specifically combating infectious agents. In previous studies, Scheinberg and colleagues had found that actinonin had an antiproliferative effect on human cancer cell lines and on tumor growth in a mouse model. They theorized this growth inhibitory activity might be related to actinonin’s inhibition of human Pdf.


The researchers now provide the evidence to support this theory. They show that human Pdf is active in the mitochondria and is essential for cellular growth and proliferation. They have designed and created a class of new actinonin-based Pdf inhibitors, and have demonstrated that they selectively inhibit growth in several human tumor cell lines. They further demonstrate that human tumor growth in mice can be suppressed by these Pdf inhibitors and suggest a mechanism of actinonin action. Taken together, these data have significant implications for the understanding and development of various Pdf-based therapeutic strategies for bacteria, mycobacteria, parasites, or cancer.

Laurie Goodman | EurekAlert!
Further information:
http://www.the-jci.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>