Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire Can Be Stopped With The Help Of Nitrogen

18.10.2004


Moscow scientists have come forward with a new methodology of fighting fire, as fire can be stopped if deprived of airflow. It is possible that soon fire-wardens will extinguish fire not with water or foam, but with liquid nitrogen.



A bright-red fire-engine has been demonstrated at the exhibition ‘High tech-2004’, held at Krasnaya Presnya exhibition complex in Moscow. The engine was so huge, that inside its body it could accommodate a tank the size of a well-fed elephant. The tank contained neither water or foam, but liquid nitrogen. The idea to extinguish fire with the help of liquid nitrogen was brought forward by the Moscow scientists from ‘Granat’ State Unitary Enterprise, Special Design Office named after V.K. Orlov.

Sadly enough, when a fire occurs in a library, theatre or even in an apartment building, the material damage caused by it might be comparable to that caused by the process of fire extinguishing. Valuable manuscripts, theatre decor and costumes, computers, even ordinary clothes and furniture – all these things get destroyed in a fire, being damaged not only by the fire itself, but also by water, foam and in the course of other traditional methods of fire extinguishing.


Therefore, a principally new approach is required when we deal with especially valuable cultural objects and buildings. This new approach has been proposed by the specialists from Moscow and implemented in a new fire-engine, called ‘a gas fire-extinguishing engine 4000’.

The idea is to stop a fire by blocking oxygen intake. In other words, replacing air by nitrogen, the researchers create an almost inert atmosphere, where the fire would inevitably die out – the materials, which can burn without oxygen, are rarely used in everyday life. They are various pyrotechnic materials or some specialized Bickford’s fuses for underwater works, which are seldom kept at home. As for the materials, generally used in everyday life, such as fabrics, paper, wood, plastics etc., they do not burn without airflow.

The tank, which is to carry nitrogen to the location of fire, has a special design. It is some sort of a huge thermos, with a capacity to accommodate about four tons of liquid nitrogen under minus 70°C and under pressure 1.1 -1.5 MPa. However, for the specialists it is nothing out of the ordinary – nitrogen is usually carried in similar containers – silver ‘barrels’ indicated ‘liquefied gas’.

Nitrogen is released with the help of a special hose from the tank, called isothermal reservoir. From inside it is made of high and low temperature resistant plastic, and outwardly it is covered by metal. The length of the hose is 100 m, so, if required, it is able to reach top floors. If the manual intake is used, simply, if a fireman holds a hose in hands, then nitrogen can be supplied at the rate of 2 kg per sec. and the amount would be sufficient for approximately half an hour.

However, in case of automated supply, the flow would be more powerful and the nitrogen discharge would make 30 kg per sec. Therefore, the ‘liquid extinguisher’ would only last for a couple of minutes, but the nitrogen flow would hit the objects at 30- meter distance. An additional benefit is that this ‘nitrogen gun’ can be aimed on the objects both ways – manually and automatically. The vertical aiming angle makes from 15 up to 60 degrees, no less, and the horizontal one – up to 240.

The benefits from this invention are obvious. First of all, under this method no damage is done to personal belongings, facilities or a building itself. In a theatre if one corner of a costume room was on fire, after the fire had been extinguished with nitrogen, not one of the ballet dancer tutus would get damaged in the places where the fire had not reached. In apartments, the ground-floor would not suffer from the dirty water and plaster fragments falling from a ceiling. And the owners of the unlucky apartment would have less trouble refurnishing their apartment.

Secondly, a fire can be extinguished without the mandatory switching off the electric supply. It means that people would not get stuck in the lifts of the buildings on fire. And, finally, this method makes it possible to extinguish fire with an ecologically safe method – what can be safer, than chemically inert nitrogen, one of the components of air.

It is also comparatively inexpensive, though liquid nitrogen is more expensive than water, but cheaper than the foam currently used for fire extinguishing. It is definitely more efficient as nitrogen can extinguish even smoldering fires: such materials as cotton wool can hardly be extinguished by any other methods. The only possibility is to throw such material into the water.

There is one more benefit - this equipment can be turned into a stationary one. There is no need to carry it everywhere on fire-engines. It can be installed in the vicinity of big libraries, museums, ware-houses, granaries, custom terminals, television and radio centers and other especially important objects. The scientists from ‘Granat’ have also created such a stationary equipment version.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>