Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fire Can Be Stopped With The Help Of Nitrogen


Moscow scientists have come forward with a new methodology of fighting fire, as fire can be stopped if deprived of airflow. It is possible that soon fire-wardens will extinguish fire not with water or foam, but with liquid nitrogen.

A bright-red fire-engine has been demonstrated at the exhibition ‘High tech-2004’, held at Krasnaya Presnya exhibition complex in Moscow. The engine was so huge, that inside its body it could accommodate a tank the size of a well-fed elephant. The tank contained neither water or foam, but liquid nitrogen. The idea to extinguish fire with the help of liquid nitrogen was brought forward by the Moscow scientists from ‘Granat’ State Unitary Enterprise, Special Design Office named after V.K. Orlov.

Sadly enough, when a fire occurs in a library, theatre or even in an apartment building, the material damage caused by it might be comparable to that caused by the process of fire extinguishing. Valuable manuscripts, theatre decor and costumes, computers, even ordinary clothes and furniture – all these things get destroyed in a fire, being damaged not only by the fire itself, but also by water, foam and in the course of other traditional methods of fire extinguishing.

Therefore, a principally new approach is required when we deal with especially valuable cultural objects and buildings. This new approach has been proposed by the specialists from Moscow and implemented in a new fire-engine, called ‘a gas fire-extinguishing engine 4000’.

The idea is to stop a fire by blocking oxygen intake. In other words, replacing air by nitrogen, the researchers create an almost inert atmosphere, where the fire would inevitably die out – the materials, which can burn without oxygen, are rarely used in everyday life. They are various pyrotechnic materials or some specialized Bickford’s fuses for underwater works, which are seldom kept at home. As for the materials, generally used in everyday life, such as fabrics, paper, wood, plastics etc., they do not burn without airflow.

The tank, which is to carry nitrogen to the location of fire, has a special design. It is some sort of a huge thermos, with a capacity to accommodate about four tons of liquid nitrogen under minus 70°C and under pressure 1.1 -1.5 MPa. However, for the specialists it is nothing out of the ordinary – nitrogen is usually carried in similar containers – silver ‘barrels’ indicated ‘liquefied gas’.

Nitrogen is released with the help of a special hose from the tank, called isothermal reservoir. From inside it is made of high and low temperature resistant plastic, and outwardly it is covered by metal. The length of the hose is 100 m, so, if required, it is able to reach top floors. If the manual intake is used, simply, if a fireman holds a hose in hands, then nitrogen can be supplied at the rate of 2 kg per sec. and the amount would be sufficient for approximately half an hour.

However, in case of automated supply, the flow would be more powerful and the nitrogen discharge would make 30 kg per sec. Therefore, the ‘liquid extinguisher’ would only last for a couple of minutes, but the nitrogen flow would hit the objects at 30- meter distance. An additional benefit is that this ‘nitrogen gun’ can be aimed on the objects both ways – manually and automatically. The vertical aiming angle makes from 15 up to 60 degrees, no less, and the horizontal one – up to 240.

The benefits from this invention are obvious. First of all, under this method no damage is done to personal belongings, facilities or a building itself. In a theatre if one corner of a costume room was on fire, after the fire had been extinguished with nitrogen, not one of the ballet dancer tutus would get damaged in the places where the fire had not reached. In apartments, the ground-floor would not suffer from the dirty water and plaster fragments falling from a ceiling. And the owners of the unlucky apartment would have less trouble refurnishing their apartment.

Secondly, a fire can be extinguished without the mandatory switching off the electric supply. It means that people would not get stuck in the lifts of the buildings on fire. And, finally, this method makes it possible to extinguish fire with an ecologically safe method – what can be safer, than chemically inert nitrogen, one of the components of air.

It is also comparatively inexpensive, though liquid nitrogen is more expensive than water, but cheaper than the foam currently used for fire extinguishing. It is definitely more efficient as nitrogen can extinguish even smoldering fires: such materials as cotton wool can hardly be extinguished by any other methods. The only possibility is to throw such material into the water.

There is one more benefit - this equipment can be turned into a stationary one. There is no need to carry it everywhere on fire-engines. It can be installed in the vicinity of big libraries, museums, ware-houses, granaries, custom terminals, television and radio centers and other especially important objects. The scientists from ‘Granat’ have also created such a stationary equipment version.

Sergey Komarov | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>