Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis To Identify Cancer

18.10.2004


An amazingly sensitive method for selective analysis of amino acids, sugars, fatty acids, and other vital compounds has been developed by Russian scientists. This method allows determining even their trace quantities (fractions of nanograms). It is applicable in identifying cancerous cells and diagnostics of cancer at the earliest stage, when traditional diagnostics fail to catch sight of the disease.

Dr. Igor Revel’sky and his colleagues from the Moscow State University have developed method that provides a 100-times increased sensitivity of detecting amino acids and other vital compounds, i.e., a highest precision of their detection. This can be used in controlling the quality of drugs and foods and, prospectively, may become an effective technique of cancer diagnostics that will be more reliable than traditional histology.

The Russian scientists propose to begin with the separation of a complex mixture (e.g., the contents of a cell suspected of cancer). They separate firstly water-soluble substances from the rest of the mixture and, then, treat each of the two obtained fractions with specific reagents. As a result, the analyzed substances become volatile and separable with the use of a gas chromatograph, in which they are diffused along with a carrier gas through a liquid or solid adsorbent for differential adsorption. Each component produces its own peak in chromatogram.



The next challenge is identifying the components and their concentrations. This is rather difficult, as investigated samples contain a great variety of components, and a universal type of detector with a high sensitivity is needed. Such a detector chosen by the Russian scientists is a mass spectrometer. This apparatus is rather expensive and requires special operation skills. It converts molecules into ions and then separates the ions according to their mass-to-charge ratio, which allows identifying atoms and isotopes. The scientists can identify the structure of initial substance using the obtained mass spectra, existing mass spectra data base, and special software.
Finally, it is necessary to recreate the original mixture composition. This process can be compared with doing a puzzle, where a picture needs to be assembled from separate pieces. In the chemical analysis, the number of pieces and pictures is never known by analyst, so, it is a rather complicated task. Information to be processed is contained in the mass spectra of components of studied mixture.

Dr. Sobolevsky, colleague of Dr. Revel’sky, has explained us the applicability of their method. It allows detecting a wide range of substances, which can be used in food quality control and for research purposes. Actually, this method has an exceptional sensitivity and selectivity. It gives a unique possibility for studying the composition of different cell components. Particularly, the scientists have revealed significant differences between the composition of amino acids in a cell culture of adenocarcinoma of human colon and their composition in healthy cells of connective tissue. We continue our research now, but it is clear already that a cancerous cell can be distinguished from a healthy cell by the composition of amino acids. This promises a great breakthrough in cancer diagnostics.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>