Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis To Identify Cancer

18.10.2004


An amazingly sensitive method for selective analysis of amino acids, sugars, fatty acids, and other vital compounds has been developed by Russian scientists. This method allows determining even their trace quantities (fractions of nanograms). It is applicable in identifying cancerous cells and diagnostics of cancer at the earliest stage, when traditional diagnostics fail to catch sight of the disease.

Dr. Igor Revel’sky and his colleagues from the Moscow State University have developed method that provides a 100-times increased sensitivity of detecting amino acids and other vital compounds, i.e., a highest precision of their detection. This can be used in controlling the quality of drugs and foods and, prospectively, may become an effective technique of cancer diagnostics that will be more reliable than traditional histology.

The Russian scientists propose to begin with the separation of a complex mixture (e.g., the contents of a cell suspected of cancer). They separate firstly water-soluble substances from the rest of the mixture and, then, treat each of the two obtained fractions with specific reagents. As a result, the analyzed substances become volatile and separable with the use of a gas chromatograph, in which they are diffused along with a carrier gas through a liquid or solid adsorbent for differential adsorption. Each component produces its own peak in chromatogram.



The next challenge is identifying the components and their concentrations. This is rather difficult, as investigated samples contain a great variety of components, and a universal type of detector with a high sensitivity is needed. Such a detector chosen by the Russian scientists is a mass spectrometer. This apparatus is rather expensive and requires special operation skills. It converts molecules into ions and then separates the ions according to their mass-to-charge ratio, which allows identifying atoms and isotopes. The scientists can identify the structure of initial substance using the obtained mass spectra, existing mass spectra data base, and special software.
Finally, it is necessary to recreate the original mixture composition. This process can be compared with doing a puzzle, where a picture needs to be assembled from separate pieces. In the chemical analysis, the number of pieces and pictures is never known by analyst, so, it is a rather complicated task. Information to be processed is contained in the mass spectra of components of studied mixture.

Dr. Sobolevsky, colleague of Dr. Revel’sky, has explained us the applicability of their method. It allows detecting a wide range of substances, which can be used in food quality control and for research purposes. Actually, this method has an exceptional sensitivity and selectivity. It gives a unique possibility for studying the composition of different cell components. Particularly, the scientists have revealed significant differences between the composition of amino acids in a cell culture of adenocarcinoma of human colon and their composition in healthy cells of connective tissue. We continue our research now, but it is clear already that a cancerous cell can be distinguished from a healthy cell by the composition of amino acids. This promises a great breakthrough in cancer diagnostics.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

New discovery: Common jellyfish is actually two species

22.11.2017 | Life Sciences

Researchers discover specific tumor environment that triggers cells to metastasize

22.11.2017 | Life Sciences

A material with promising properties

22.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>