Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis To Identify Cancer

18.10.2004


An amazingly sensitive method for selective analysis of amino acids, sugars, fatty acids, and other vital compounds has been developed by Russian scientists. This method allows determining even their trace quantities (fractions of nanograms). It is applicable in identifying cancerous cells and diagnostics of cancer at the earliest stage, when traditional diagnostics fail to catch sight of the disease.

Dr. Igor Revel’sky and his colleagues from the Moscow State University have developed method that provides a 100-times increased sensitivity of detecting amino acids and other vital compounds, i.e., a highest precision of their detection. This can be used in controlling the quality of drugs and foods and, prospectively, may become an effective technique of cancer diagnostics that will be more reliable than traditional histology.

The Russian scientists propose to begin with the separation of a complex mixture (e.g., the contents of a cell suspected of cancer). They separate firstly water-soluble substances from the rest of the mixture and, then, treat each of the two obtained fractions with specific reagents. As a result, the analyzed substances become volatile and separable with the use of a gas chromatograph, in which they are diffused along with a carrier gas through a liquid or solid adsorbent for differential adsorption. Each component produces its own peak in chromatogram.



The next challenge is identifying the components and their concentrations. This is rather difficult, as investigated samples contain a great variety of components, and a universal type of detector with a high sensitivity is needed. Such a detector chosen by the Russian scientists is a mass spectrometer. This apparatus is rather expensive and requires special operation skills. It converts molecules into ions and then separates the ions according to their mass-to-charge ratio, which allows identifying atoms and isotopes. The scientists can identify the structure of initial substance using the obtained mass spectra, existing mass spectra data base, and special software.
Finally, it is necessary to recreate the original mixture composition. This process can be compared with doing a puzzle, where a picture needs to be assembled from separate pieces. In the chemical analysis, the number of pieces and pictures is never known by analyst, so, it is a rather complicated task. Information to be processed is contained in the mass spectra of components of studied mixture.

Dr. Sobolevsky, colleague of Dr. Revel’sky, has explained us the applicability of their method. It allows detecting a wide range of substances, which can be used in food quality control and for research purposes. Actually, this method has an exceptional sensitivity and selectivity. It gives a unique possibility for studying the composition of different cell components. Particularly, the scientists have revealed significant differences between the composition of amino acids in a cell culture of adenocarcinoma of human colon and their composition in healthy cells of connective tissue. We continue our research now, but it is clear already that a cancerous cell can be distinguished from a healthy cell by the composition of amino acids. This promises a great breakthrough in cancer diagnostics.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>