Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study using robotic microscope shows how mutant Huntington’s protein affects neurons

14.10.2004


Using a specially designed robotic microscope to study cultured cells, researchers have found evidence that abnormal protein clumps called inclusion bodies in neurons from people with Huntington’s disease (HD) prevent cell death. The finding helps to resolve a longstanding debate about the role of these inclusion bodies in HD and other disorders and may help investigators find effective treatments for these diseases. The study was funded primarily by the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and appears in the October 14, 2004, issue of Nature.*



Inclusion bodies are common to many neurodegenerative disorders, including HD, Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS). The role of inclusion bodies in these diseases has long been controversial. Some studies suggest that they may be a critical part of the disease process, while others indicate that they may help protect the cells from toxic proteins or that they are merely bystanders in the disease process.

One problem in identifying how inclusion bodies influence disease is that researchers have been unable to track changes in individual neurons over time. "It was like viewing pictures of a football game and trying to imagine the score," says Steven Finkbeiner, M.D., Ph.D., of the Gladstone Institute of Neurological Disease and the University of California, San Francisco. "Much was happening that we couldn’t see."


To overcome this problem, Dr. Finkbeiner and his colleagues wrote a computer program that allows a microscope to match images in a culture dish to images it has stored and to manipulate its controls to look at the same neurons over and over again - like time-lapse photography. This allowed the investigators to follow changes in a single neuron or a group of neurons over a period of days. They used this automated microscope to study neurons that contained a version of the huntingtin protein that causes HD. The huntingtin was fused to green fluorescent protein, a widely used marker that allows researchers to see where proteins accumulate.

Many neurons with the mutated HD gene died without forming inclusion bodies, the researchers found. The formation of inclusion bodies actually prolonged neurons’ survival and lowered their overall risk of death. The rate of cell death was higher in neurons with larger gene mutations, but the death rate for each set of cells remained constant over time.

The researchers also examined the level of mutant huntingtin protein spread throughout the neurons, outside of inclusion bodies. They found that neurons with larger amounts of mutant huntingtin spread throughout the cell died more rapidly than cells with less of this protein. The amount of mutated protein decreased in other parts of the cell when inclusion bodies formed. Taken together, these findings suggest that inclusion bodies lock up mutant huntingtin and keep it from interfering with the rest of the neuron in ways that can trigger cell death.

These findings provide evidence that inclusion bodies in HD, and possibly other neurodegenerative diseases, help neurons cope with toxic proteins and avoid neurodegeneration. Many researchers have been working to develop ways of interfering with inclusion body formation as potential treatments for HD and other disorders. This study suggests that finding ways to remove mutant proteins diffused throughout the cell might be a more effective approach.

"This approach provides a way to connect cellular changes to fate," says Dr. Finkbeiner. The automated microscope system could be applied to sort out many important questions about how cellular changes or abnormalities affect disease, he adds. He and his colleagues are now planning studies to examine the role of proteasomes – enzyme-filled compartments that break down and recycle proteins – in HD.

Natalie Frazin | EurekAlert!
Further information:
http://www.ninds.nih.gov

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Molecule flash mob

19.01.2017 | Physics and Astronomy

Rabies viruses reveal wiring in transparent brains

19.01.2017 | Health and Medicine

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>