Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study using robotic microscope shows how mutant Huntington’s protein affects neurons

14.10.2004


Using a specially designed robotic microscope to study cultured cells, researchers have found evidence that abnormal protein clumps called inclusion bodies in neurons from people with Huntington’s disease (HD) prevent cell death. The finding helps to resolve a longstanding debate about the role of these inclusion bodies in HD and other disorders and may help investigators find effective treatments for these diseases. The study was funded primarily by the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and appears in the October 14, 2004, issue of Nature.*



Inclusion bodies are common to many neurodegenerative disorders, including HD, Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS). The role of inclusion bodies in these diseases has long been controversial. Some studies suggest that they may be a critical part of the disease process, while others indicate that they may help protect the cells from toxic proteins or that they are merely bystanders in the disease process.

One problem in identifying how inclusion bodies influence disease is that researchers have been unable to track changes in individual neurons over time. "It was like viewing pictures of a football game and trying to imagine the score," says Steven Finkbeiner, M.D., Ph.D., of the Gladstone Institute of Neurological Disease and the University of California, San Francisco. "Much was happening that we couldn’t see."


To overcome this problem, Dr. Finkbeiner and his colleagues wrote a computer program that allows a microscope to match images in a culture dish to images it has stored and to manipulate its controls to look at the same neurons over and over again - like time-lapse photography. This allowed the investigators to follow changes in a single neuron or a group of neurons over a period of days. They used this automated microscope to study neurons that contained a version of the huntingtin protein that causes HD. The huntingtin was fused to green fluorescent protein, a widely used marker that allows researchers to see where proteins accumulate.

Many neurons with the mutated HD gene died without forming inclusion bodies, the researchers found. The formation of inclusion bodies actually prolonged neurons’ survival and lowered their overall risk of death. The rate of cell death was higher in neurons with larger gene mutations, but the death rate for each set of cells remained constant over time.

The researchers also examined the level of mutant huntingtin protein spread throughout the neurons, outside of inclusion bodies. They found that neurons with larger amounts of mutant huntingtin spread throughout the cell died more rapidly than cells with less of this protein. The amount of mutated protein decreased in other parts of the cell when inclusion bodies formed. Taken together, these findings suggest that inclusion bodies lock up mutant huntingtin and keep it from interfering with the rest of the neuron in ways that can trigger cell death.

These findings provide evidence that inclusion bodies in HD, and possibly other neurodegenerative diseases, help neurons cope with toxic proteins and avoid neurodegeneration. Many researchers have been working to develop ways of interfering with inclusion body formation as potential treatments for HD and other disorders. This study suggests that finding ways to remove mutant proteins diffused throughout the cell might be a more effective approach.

"This approach provides a way to connect cellular changes to fate," says Dr. Finkbeiner. The automated microscope system could be applied to sort out many important questions about how cellular changes or abnormalities affect disease, he adds. He and his colleagues are now planning studies to examine the role of proteasomes – enzyme-filled compartments that break down and recycle proteins – in HD.

Natalie Frazin | EurekAlert!
Further information:
http://www.ninds.nih.gov

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>