Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Channel protein converts vibrations to electrical signal

14.10.2004


Researchers have identified a molecule that can transform the mechanical stimulus of a sound wave into an electrical signal recognizable by the brain. The protein forms an ion channel that opens in response to sound, causing electrical impulses that communicate the pitch, volume, and duration of a sound to the brain.



Scientists have long suspected that such a molecule must exist in the tiny cilia extending from receptor cells in the inner ear. Now, researchers led by Howard Hughes Medical Institute investigator David P. Corey, who is at Harvard Medical School, have several lines of evidence that, in vertebrates, this mechanosensitive channel is formed by a protein known as TRPA1. Certain features of the protein suggest that it may serve double, or even triple, duty in the inner ear, not only acting as an ion channel, but also forming a spring that allows the transduction machinery to stretch, and even amplifying incoming auditory signals. The work is published October 13, 2004, in an advance online publication of the journal Nature.

The cells that line the inner ear and convert mechanical sound vibrations into electrical impulses are known as hair cells – named for the tuft of 30-300 cilia, or microscopic hairs, on each cell’s surface. Thin filaments called tip links connect the channels in adjacent hairs, so that when a vibration stirs the bundle of cilia, the tip links are tightened and pull on the channels. Within 5 to 10 microseconds of this motion, channels in the hair cell open and allow ions to enter – the first step in sending a sound signal to the brain.


According to Corey, the rapidity of this response – which is as much as 1,000 times faster than the opening of similar channels in the eye in response to light – indicated to scientists that the channel must respond directly to the mechanical stimulus, rather than relying on a signal from another molecule. The speed of the response was determined more than 20 years ago in the laboratory of HHMI investigator A. James Hudspeth – but since that time, no one had been able to identify the channel protein.

In the search for a molecule that might form the hair cell channel, the researchers turned to a family of ion channels known as TRPs, or transient receptor potential channels. "We thought the TRP family was a likely place to look for this channel, because many other TRP channels are involved in sensory transduction," Corey said. "In mammalian pheromone receptors, insect vision, hearing in flies, or touch in worms – there were a lot of other TRP channels that seemed to be sensory." In addition, the selectivity and conductance of TRPs corresponded to what was already known about the unidentified hair cell channel.

TRPA1 was a particularly good candidate within this family, Corey said, because it has an architecture similar to a TRP channel that is mechanosensory in the fruit fly – a molecule known as NOMPC, identified by HHMI investigator Charles S. Zuker. In other parts of the nervous system, however, the TRPA1 channel is activated by such stimuli as painfully cold temperatures and pungent chemicals like mustard, cinnamon oil, and wasabi, which seemed incompatible with mechanical activation in the ear.

The distribution of TRPA1 was one of the first clues that TRPA1 might indeed be the channel the researchers were searching for. They found that the TRPA1 gene was expressed in the inner ear of the mouse, including in the hair cells. Not only was TRPA1 in the right place to be the channel they were searching for, Corey said, it was also there at the right time. When the researchers tested for TRPA1 gene expression in developing mouse embryos, they found that the gene became active when the embryo was about 16 days old – just a day before hair cells become mechanically sensitive.

Next, the scientists looked for TRPA1 within the hair cell. In frogs and mice, a fluorescently-tagged TRPA1 antibody bound the tips of the cilia, where the mechanically activated channels were known to be located. This localization of TRPA1 changed, however, when the researchers treated the hair cells with a chemical that damages the mechanically-sensitive signaling pathway.

Other researchers had recently found that if a hair cell’s tip links are chemically separated, the tip link protein, cadherin 23, is removed from the cilia within minutes. According to Corey, this suggests that once a hair cell senses that its signaling complex has been damaged, it rapidly recycles the components of that pathway so they can be reused or replaced. "So we said, look, if the tip-link protein goes away when you separate the tip links, maybe other parts of the transduction machinery will go away. And if TRPA1 is the right channel, it should go away." In fact, TRPA1 did disappear when the tip links were removed – further evidence for a role in that signaling pathway.

The next step was to determine how cells functioned without TRPA1, which the researchers tested by interfering with the production of the protein in both zebrafish embryos and hair cells from mice. To test function, the researchers bathed the embryos or the mouse cells in a solution containing a dye – either yellow or red – that can pass through the ion channel. The dye entered the normal cells, accumulating and causing them to glow. In cells where TRPA1 had been reduced, however, less dye was able to enter the cells – suggesting that without TRPA1, there was no channel for the molecule to pass through.

"A more direct way to measure the mechanical sensitivity of the cell is to measure the electrical response that it gives when you stimulate the cell," Corey said. By putting a microelectrode on the mouse hair cells, the scientists could directly measure the amount of current flowing through the channels. With lower levels of TRPA1, current flow was diminished. In zebrafish embryos, they measured the voltage inside the developing ear, and found that this, too, was reduced when TRPA1 levels were low.

Given the evidence that TRPA1 plays an integral role in the conversion of a mechanical stimulus to an impulse that the brain can interpret, Corey is eager to determine whether defects in TRPA1 might play a role in inherited deafness. "At the moment there are no known deafnesses that map to the same chromosomal location as this channel," he said, "but we are screening some unmapped deafness families."

In addition to the evidence that TRPA1 forms a mechanically-gated channel in the hair cells, the structure of the protein suggests that it may play another role. Previous biophysical studies had indicated that a springy structure that stretches when a hair cell’s cilia move pulled on the channels. Although it was once thought that the tip links might serve this function, the recent discovery of the tip-link protein, cadherin 23, suggested that their structure is too rigid for this role. "Part of the TRPA1 molecule is a long chain of ankryin repeats, and we think that the ankryin repeats actually form the elastic element that had been defined biophysically," Corey said. He plans further experiments to test this possibility.

Additionally, Corey suspects that TRPA1 might play a role in the amplification of sound signals, a process that increases sensitivity and improves the ability to distinguish between different frequencies. In mammals, hair cells not only respond to sound, but also amplify the vibrations for quiet sounds as much as 100-fold. One hypothesis for how they do this, first proposed by James Hudspeth, is that after the transduction channels open with each cycle of sound, they quickly snap shut, and the force of this snapping can push the cilia bundle. Like pushing a child on a swing, successive pushes can build up to a large oscillation, amplifying the sound. In addition, different hair cells amplify different frequencies, so this mechanism could create the sharp tuning in the ear that allows us to discriminate fine differences in pitch. If this model is true, TRPA1 may also be the amplifier protein.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>