Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel a central mystery of how hearing happens

14.10.2004


Scientists at the University of Virginia Health System have helped solve the mystery of how the human ear converts sound vibrations and balance stimuli into electrical impulses the brain can interpret. Their research is detailed in the October 13 advance online edition of the journal Nature, found at www.nature.com/nature .

Neuroscience researchers Jeffrey Holt and Gwenaëlle Géléoc, working in collaboration with scientists elsewhere, discovered a long-sought protein called TRPA1 that is located at the tips of the tiny sensory cells in the inner ear. They found that TRPA1 converts sound into nerve impulses, which are transmitted to the brain. Identification of the protein and the gene that encodes TRPA1, could allow for future treatments for deafness. "This is one of the most significant findings in sensory biology, detailing an ingeniously simple, but remarkably sensitive system," said Holt, an assistant professor of neuroscience and otolaryngology at the U.Va. Health System.

"For hearing researchers, this discovery is the holy grail in understanding the function of both hearing and balance," said Jeffrey Corwin, professor of neuroscience at U.Va. The protein TRPA1 works by forming a channel resembling a donut in the cell membrane of inner ear hair cells. "In the absence of sound, the hole is closed, "Holt explained. "But when sound strikes the protein, the hole pops open like a trap door, allowing potassium and calcium ions to flood into the cells. Because these elements carry a positive charge, an electrical signal is generated which is relayed to the brain for interpretation."



Now that this genetic link to hearing has been established, Holt said, geneticists can examine the gene that encodes TRPA1 in deaf patients, some of whom he expects may have a mutated form of the TRPA1 gene. "This could allow for the development of new gene therapies for deafness and balance disorders in the next five to ten years," Holt said. "Essentially, if we could take a correct copy of the gene and reintroduce it into the cells of the inner ear, we might be able to restore hearing and balance function in people with hereditary inner ear disorders."

A large body of circumstantial evidence has accumulated over the past 25 years that suggests a mechanically sensitive, donut-shaped protein must be at the heart of the body’s hearing apparatus, but scientists had no idea of what it was, despite intense effort. Holt and Géléoc previously identified an 18-hour window for the functional development of inner ear hair cells in mouse embryos. This breakthrough helped them identify that the TRPA1 gene was turned on during the same 18-hour period, sending the U.Va. scientists down the path to discovery.

"Now that we’ve identified TRPA1 as the hair cell transduction channel," Géléoc said, "this opens a window of opportunity with significant implications for the field of hearing and deafness research and beyond, including the fields of engineering and nanotechnology."

The husband and wife team of Holt and Géléoc, an assistant professor of research in neuroscience and otolaryngology at U.Va., worked in collaboration with scientists at Northwestern University, Duke University, Harvard Medical School and the National Institutes of Health. "This represents science at its best," Holt said. "We approached this question from a number of angles, with a number of different techniques and in a number of different research labs. The fact that we collaborated and came up with the same answer independently allows us to make a much more convincing scientific argument than any one scientist or lab could have done on their own."

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu
http://www.nature.com/nature

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>