Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel a central mystery of how hearing happens

14.10.2004


Scientists at the University of Virginia Health System have helped solve the mystery of how the human ear converts sound vibrations and balance stimuli into electrical impulses the brain can interpret. Their research is detailed in the October 13 advance online edition of the journal Nature, found at www.nature.com/nature .

Neuroscience researchers Jeffrey Holt and Gwenaëlle Géléoc, working in collaboration with scientists elsewhere, discovered a long-sought protein called TRPA1 that is located at the tips of the tiny sensory cells in the inner ear. They found that TRPA1 converts sound into nerve impulses, which are transmitted to the brain. Identification of the protein and the gene that encodes TRPA1, could allow for future treatments for deafness. "This is one of the most significant findings in sensory biology, detailing an ingeniously simple, but remarkably sensitive system," said Holt, an assistant professor of neuroscience and otolaryngology at the U.Va. Health System.

"For hearing researchers, this discovery is the holy grail in understanding the function of both hearing and balance," said Jeffrey Corwin, professor of neuroscience at U.Va. The protein TRPA1 works by forming a channel resembling a donut in the cell membrane of inner ear hair cells. "In the absence of sound, the hole is closed, "Holt explained. "But when sound strikes the protein, the hole pops open like a trap door, allowing potassium and calcium ions to flood into the cells. Because these elements carry a positive charge, an electrical signal is generated which is relayed to the brain for interpretation."



Now that this genetic link to hearing has been established, Holt said, geneticists can examine the gene that encodes TRPA1 in deaf patients, some of whom he expects may have a mutated form of the TRPA1 gene. "This could allow for the development of new gene therapies for deafness and balance disorders in the next five to ten years," Holt said. "Essentially, if we could take a correct copy of the gene and reintroduce it into the cells of the inner ear, we might be able to restore hearing and balance function in people with hereditary inner ear disorders."

A large body of circumstantial evidence has accumulated over the past 25 years that suggests a mechanically sensitive, donut-shaped protein must be at the heart of the body’s hearing apparatus, but scientists had no idea of what it was, despite intense effort. Holt and Géléoc previously identified an 18-hour window for the functional development of inner ear hair cells in mouse embryos. This breakthrough helped them identify that the TRPA1 gene was turned on during the same 18-hour period, sending the U.Va. scientists down the path to discovery.

"Now that we’ve identified TRPA1 as the hair cell transduction channel," Géléoc said, "this opens a window of opportunity with significant implications for the field of hearing and deafness research and beyond, including the fields of engineering and nanotechnology."

The husband and wife team of Holt and Géléoc, an assistant professor of research in neuroscience and otolaryngology at U.Va., worked in collaboration with scientists at Northwestern University, Duke University, Harvard Medical School and the National Institutes of Health. "This represents science at its best," Holt said. "We approached this question from a number of angles, with a number of different techniques and in a number of different research labs. The fact that we collaborated and came up with the same answer independently allows us to make a much more convincing scientific argument than any one scientist or lab could have done on their own."

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu
http://www.nature.com/nature

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>