Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondria findings may help beat wide range of disease

13.10.2004


New findings explaining the complicated process by which the "energy substations" of human cells split apart and recombine may lay the groundwork for new treatment approaches to a wide range of diseases, including some cancers and neurodegenerative diseases such as Parkinson’s and Alzheimer’s.



Researchers from The Johns Hopkins University’s Integrated Imaging Center; the University of California, Davis; and the California Institute of Technology collaborated on two new studies analyzing the mechanisms and proteins that underlie the fission-fusion cycle of the cellular powerplants, called mitochondria. Their findings were published in two recent issues of the journal Science.

"To understand the role that mitochondria play in both normal and aberrant cell biology, it is essential to first understand the fusion-fission process that occurs continuously in normal, healthy cells," said J. Michael McCaffery, a research scientist in the Johns Hopkins Department of Biology, director of the Integrated Imaging Center, and an author on both studies.


Mitochondria constantly split and recombine and as cells divide, they pass along to each "daughter" cell the full complement of mitochondria necessary for healthy cell physiology. Recent research suggests that when this process goes awry, healthy cells die, resulting in diseases ranging from optic atrophy (the most common inherited form of blindness), to Charcot-Marie-Tooth disease (a disease in which nerves in the hands, feet and lower legs die off), to Parkinson’s and Alzheimer’s diseases (which arise from neurodegenerative cell death), and even to some types of cancer.

Until now, though, understanding of those diseases was greatly limited by a lack of knowledge about the mitochondrial fusion portion of the cycle. "Fusion of single membranes is a well-delineated process, involving well-known, well-studied proteins," McCaffery said. "However, the same cannot be said for mitochondrial fusion, in which the key sequence of events and facilitating proteins remain largely unknown."

The mitochondrial fusion process is challenging to understand because mitochondria are structurally very complex, double-membrane bound organelles. In order for separate mitochondria to fuse, two distinct, compositionally very different membranes must join. Understanding how mitochondria accomplish this while maintaining the integrity of their compartments and the appropriate segregation of membranes and proteins is a fundamental question that the researchers sought to answer.

McCaffery’s team helped tackle this question by studying isolated mitochondria that had been removed from cells, observing them in test tubes using both light and electron microscopy. This cell-free approach allowed researchers a first-ever glimpse into the sequence of events underlying outer and inner membrane fusion.

What they discovered -- that mitochondria removed from their host-cell environment were nonetheless able to fuse -- surprised them because it suggested that mitochondria contain within themselves all the proteins necessary for fusion. This stands in stark contrast to the process of single-membrane fusion, which requires many additional cellular proteins to carry out this important function.

"We observed two distinct stages, with the first involving outer membrane fusion yielding an intermediate structure of two conjoined mitochondria, followed by the subsequent fusion of the inner membranes giving rise to a single mitochondrion," McCaffery said. "Understanding the discrete molecular events that underlie dynamic mitochondrial behavior has the potential to reveal keen insights into the basic and essential cell-mitochondria relationship, leading to increased understanding of the aging process; and potential treatments and perhaps cures of those age-related scourges of Parkinson’s and Alzheimer’s."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>