Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step towards unraveling the genetic pathways of left-right body asymmetry

13.10.2004


Researchers at the Instituto Gulbenkian de Ciência (IGC), in Portugal, have taken a major step forward in understanding one of the fundamental questions in the field of developmental biology today: how the organs are placed in their correct positions in the body. In a study published in the 1st October issue of the journal Genes and Development, the scientists describe, for the first time, the role of the gene Cerl-2 (Cerberus-like-2), in setting up the asymmetric distribution of organs in the embryo, that is, why the heart always is always on the left and the liver always on the right hand side of the body, for example.



The team of scientists, lead by José António Belo, made genetically altered mice, in which the Cerl-2 gene is not functional, known as ‘knockout’ mice. These animals show several physical changes, such as lungs with two identical lobes (the left lobe), left-right inversions of the heart and lungs and of some abdominal organs (the stomach, the duodenum and the kidneys, for example).

The effect of Cerl-2 on the left-right asymmetry of the embryos seems to be a result of its role as an antagonist of another gene previously implicated in this process, known as Nodal. Nodal is switched on asymmetrically in the embryo, only on the left hand side of a tissue called the lateral plate mesoderm (there is also the right lateral plate mesoderm) and in the left half of the node (a signaling structure that is crucial for the correct development of the embryo). Nodal turns on a signaling cascade of genes, restricted to the left hand-side of the embryo. On the other hand, Cerl-2 is switched on in only the right half of the node, adjacent to the area of Nodal.


The IGC scientists have also shown, for the first time, that, when Cerl-2 is absent, Nodal is switched on in the right lateral plate mesoderm too, or even only on this side. As a result, the chain of reactions triggered by Nodal becomes active on both sides and the embryo no longer knows which is left and which is right leading to the incorrect organ distribution seen in the ‘knockout’ mice.

Many research groups, all over the world, are looking into the mechanism, or mechanisms, that break the early symmetry of the embryo, thus creating asymmetric organisms. Cilia (short tail-like structures) on the node cells have recently been described as playing a role in symmetry breaking: their leftward rotation guides the asymmetric switching on of genes and later organ distribution. According to José António Belo, their study now demonstrates that another genetic mechanism is acting in parallel with the cilia: it all takes place in the node, soon after the embryo is formed, and involves Cerl-2 controlling the asymmetric activity of Nodal.

This study is the latest of a series published in several leading scientific journals, during the five years of setting up and running the group. The team shall be moving to the University of the Algarve, in the south of Portugal, where José António Belo is Assistant Professor.

According to António Coutinho, Director of the IGC, this study is yet a further example of the patent success of the IGC in its mission to give young scientists the opportunity to install their teams, over a five-year period, before moving on to universities and other research centres in the country. During the five years spent at the IGC, the team leaders develop and establish themselves within the scientific community, so that the move to other centres may be smooth and problem-free for all: the scientists themselves, the universities and the IGC, that remains open to host other young scientists.

Ana Coutinho | alfa
Further information:
http://www.igc.gulbenkian.pt

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>