Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF scientists have bionanotechnology recipe to find elusive bacteria

12.10.2004


A team of University of Florida researchers has created tiny hybrid particles that can speedily root out even one isolated E. coli bacterium lurking in ground beef or provide a crucial early warning alarm for bacteria used as agents of bioterrorism and for early disease diagnosis. The study will appear this week in the Proceedings of the National Academy of Sciences.



"Our focus is the development of a bionanotechnology that combines the strengths of nanotechnology and biochemistry to generate a new type of ’bionanomaterial,’ which has some unique properties," said Weihong Tan, a UF Research Foundation professor of chemistry and associate director of UF’s Center for Research at the Bio/Nano Interface. "Because of these properties, we’re able to finish the detection of a single bacterium in 20 minutes."

Bionanotechnology is a new frontier of research that combines two seemingly incompatible materials – the building blocks of life and synthetic structures – at a tiny, molecular-sized scale. Nanotechnology works with objects that are on the order of 1 to 100 nanometers; a nanometer is one-billionth of a meter, about the size of several atoms. When combined with molecular biology, the possible applications of this nano-frontier are widespread and sound like the stuff of science fiction. Scientists currently are designing microscopic "nanobots", bioprobes and biosensors that, once implanted in the human body, could perform a number of medical duties, from delivering drugs to detecting malignant cells.


Tan’s compound materials are called "bioconjugated nanoparticles," a prefix-heavy term that highlights their blended nature. "It’s a very simple idea," said Tan. He takes antibodies -- molecules used to seek specific types of bacteria -- and attaches, or "conjugates", them to tiny dye-loaded particles.

"A bioconjugated particle is linked to the antibody, which can recognize a specific type of bacterium," Tan said. "Inside this particle, we put many fluorescent dye molecules in such a way that you can generate a very, very high signal." Once a particle finds the bacteria that it’s designed to seek, it glows.

Dye-labeled antibodies are commonly used to locate bacteria in a sample, but traditional methods are not very sensitive -- the glow from one antibody-linked dye molecule just isn’t easy to see, and that can create potential health risks. "Sometimes one bacterium makes the difference," Tan said.

The secret to the UF team’s super-sensitive method is in the sauce: The silica structure they use to bind the antibody-and-dye amalgam together allows each particle to hold thousands of dye molecules, rather than just one, making the fluorescent signal hundreds to thousands of times brighter.

Enhancing the fluorescent signal also eliminates a time-consuming part of the current bacteria detection process. Small amounts of bacteria are difficult to detect and to count how many bacteria are in a sample, scientists often have to "plate" it -- place the sample in a Petri dish and let the bacterial colonies grow for one to a few days before analysis. However, the bioconjugated nanoparticles found a single E. coli bacterium in a sample of ground beef in less than 20 minutes, from start to finish.

A quicker analysis time is not only vital for early disease detection but also will be critical in combating bioterrorism, Tan said. "In situations when there is life and death, when you have to make a decision very quickly, our technology will really give you the quick decision." Analyzing a possible bioterrorist agent by traditional means could take days and would involve sealing off the entire area during that time, he said. "Instead, we can come back in 20 minutes and say either this is safe or there is a problem." Chad Mirkin, professor of chemistry at Northwestern University and director of Northwestern’s Institute for Nanotechnology, said the new technique looks promising.

"This looks to be a pretty impressive way of detecting bacteria, and the obvious point of impact would be in the food safety industry," Mirkin said. "It looks quite good for pathogen detection in foods, which is a huge issue."

The research team includes former UF scientist Xiaojun Zhao, now an assistant professor at the University of North Dakota; UF graduate student Lisa Hilliard; postdoctoral researchers Shelly John Mechery, Yanping Wang and Rahul Bagwe; and Shouguang Jin, associate professor of molecular genetics and microbiology. The research was funded by the National Science Foundation, the Packard Foundation and the National Institutes of Health.

The team now is working on tailoring the bioconjugated nanoparticles to detect multiple bacteria simultaneously, including health threats E. coli, Salmonella and Bacillus cereus spores, a toxin found in many foods. The ultrasensitive particles can be adapted to detect a wide variety of bacteria used as bioterrorism agents in food, clinical and environmental samples and can be used to detect disease in its earliest stages, Tan said.

"This is really the interface of biological science and nanotechnology," he said. "In situations when the very sensitive detection of bacteria or other biological reagents is the critical issue, I think our technology will have a clear edge."

Weihong Tan | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>