Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells in retina found to behave like soap bubbles

12.10.2004


Soap bubbles delight children and the young at heart, but they also have been objects of scientific study for centuries. Operating under the laws of physics, bubbles always try to minimize their surface area, even when many bubbles are aggregated together.



Now two Northwestern University scientists have demonstrated that the tendency to minimize surface area is not limited to soap bubbles but extends to living things as well. In a paper published Oct. 7 in the journal Nature, they show that cells within the retina take on shapes and pack together like soap bubbles, ultimately forming a pattern that is repeated again and again across the eye. Gaining insight into these patterns can help researchers understand the interplay between genetics and physics in cell formation.

"The cells we studied, those found in the retina of the fruit fly, adopt mathematically predictable shapes and configurations," said Richard W. Carthew, professor of biochemistry, molecular biology and cell biology and a co-author on the paper. "Like bubbles, life has co-opted a physical tendency for surfaces to be minimized and has harnessed it to design intricate cellular patterns within complex structures such as the eye."


Similar to the colored dots in a Georges Seurat painting, though on a three-dimensional scale, the cell is the indivisible unit that gives shape to something larger and recognizable -- a butterfly, a maple tree, a human being. How is this amazing diversity of species created?

"It is like designing the pieces of a jigsaw puzzle so that they fit together seamlessly," said Carthew. "Understanding how cells fit together in space is an underappreciated area of science that has started to gain serious momentum in the last decade. Cells are different shapes and pack together in different ways depending on where they are located in a living thing and what their function is."

In investigating the physical basis of biological patterning in the retina, Carthew and co-author Takashi Hayashi, a post-doctoral fellow at Northwestern, looked at normal retinal cells where four cells group together to form an aperture that is circular in shape. They found that they did so in exactly the same pattern as a group of four soap bubbles. Then, they varied the number of cells in each aperture and looked at how the cells fit together. Again, the cell configurations correlated perfectly to those of bubbles of the same number. When an aperture had one to five cells each resulted in one configuration. If an aperture had six cells, three different configurations were possible, but always the same three.

"By looking at one exquisitely structured tissue in one species, we discovered how the cells order themselves," said Carthew, who with Hayashi has been studying the form and function of the retina for years. "This experiment illustrates the importance of mathematics and physics in biology and points to a general principle of patterning found in a wide range of living things."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>