Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells in retina found to behave like soap bubbles

12.10.2004


Soap bubbles delight children and the young at heart, but they also have been objects of scientific study for centuries. Operating under the laws of physics, bubbles always try to minimize their surface area, even when many bubbles are aggregated together.



Now two Northwestern University scientists have demonstrated that the tendency to minimize surface area is not limited to soap bubbles but extends to living things as well. In a paper published Oct. 7 in the journal Nature, they show that cells within the retina take on shapes and pack together like soap bubbles, ultimately forming a pattern that is repeated again and again across the eye. Gaining insight into these patterns can help researchers understand the interplay between genetics and physics in cell formation.

"The cells we studied, those found in the retina of the fruit fly, adopt mathematically predictable shapes and configurations," said Richard W. Carthew, professor of biochemistry, molecular biology and cell biology and a co-author on the paper. "Like bubbles, life has co-opted a physical tendency for surfaces to be minimized and has harnessed it to design intricate cellular patterns within complex structures such as the eye."


Similar to the colored dots in a Georges Seurat painting, though on a three-dimensional scale, the cell is the indivisible unit that gives shape to something larger and recognizable -- a butterfly, a maple tree, a human being. How is this amazing diversity of species created?

"It is like designing the pieces of a jigsaw puzzle so that they fit together seamlessly," said Carthew. "Understanding how cells fit together in space is an underappreciated area of science that has started to gain serious momentum in the last decade. Cells are different shapes and pack together in different ways depending on where they are located in a living thing and what their function is."

In investigating the physical basis of biological patterning in the retina, Carthew and co-author Takashi Hayashi, a post-doctoral fellow at Northwestern, looked at normal retinal cells where four cells group together to form an aperture that is circular in shape. They found that they did so in exactly the same pattern as a group of four soap bubbles. Then, they varied the number of cells in each aperture and looked at how the cells fit together. Again, the cell configurations correlated perfectly to those of bubbles of the same number. When an aperture had one to five cells each resulted in one configuration. If an aperture had six cells, three different configurations were possible, but always the same three.

"By looking at one exquisitely structured tissue in one species, we discovered how the cells order themselves," said Carthew, who with Hayashi has been studying the form and function of the retina for years. "This experiment illustrates the importance of mathematics and physics in biology and points to a general principle of patterning found in a wide range of living things."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>