Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method identifies chromosome changes in malignant cells

12.10.2004


Combination of computer science and biology could aid cancer research

In a boost to cancer research, Princeton scientists have invented a fast and reliable method for identifying alterations to chromosomes that occur when cells become malignant. The technique helps to show how cells modify their own genetic makeup and may allow cancer treatments to be tailored more precisely to a patient’s disease. Cancer cells are known among biologists for their remarkable ability to disable some genes and overuse others, allowing their unchecked growth into tumors. The most aggressive of these distortions occurs when cells delete or multiply chunks of their own chromosomes. Cells can simply snip strings of genes from the chromosome, or make many extra copies of the string and reinsert it into the chromosome.

Until now, scientists had no routine way to detect these alterations except for very large-scale deletions or additions. Finding small, but critical additions or deletions to chromosomes required painstaking, gene-by-gene searches. Combining computer science and biology, Princeton scientist Olga Troyanskaya, graduate student Chad Myers and other colleagues invented a method for quickly analyzing an entire genome -- all the genes contained in a cell -- and producing a reliable list of chromosome sections that have been either deleted or added.



"The problem is similar to finding typos in a very large book written in a language you don’t fully understand," said Troyanskaya, an assistant professor in the Department of Computer Science and the Lewis-Sigler Institute for Integrative Genomics. "All you know are some general rules of grammar and syntax. It would take you years to do by hand, and it’s even very hard with a computer."

Troyanskaya and Myers started with data from genomics tools that identify thousands of genes at once and show how actively they are being used. They used advanced statistical techniques to analyze this data and accurately detect deletions and additions -- some as small as four or five genes -- among tens of thousands of genes.

The achievement illustrates the value of the interdisciplinary environment fostered by the Lewis-Sigler Institute for Integrative Genomics, said Troyanskaya. "For this kind of problem you need people who understand computer science, statistics and biology," she said. "Neither side could do it alone."

Their findings will be published in an upcoming edition of the journal Bioinformatics and were posted to the journal’s Web site July 29. Troyanskaya and Myers wrote the paper in collaboration with Lewis-Sigler fellow Maitreya Dunham and professor of electrical engineering Sun-Yuan Kung.

The researchers applied their technique to yeast cells as well as human breast cancer cells and found many previously unknown additions and deletions. The results support an idea proposed by some biologists that chromosome additions and deletions are more common than previously believed.

"If a cell really wants to change its behavior drastically -- if it is a cancer cell or something has changed in its environment -- the fastest way is just to amplify or delete a chunk of chromosome," said Troyanskaya. "We needed a way to identify these deletions and amplifications very accurately."

The new method could be particularly important for cancer research because it gives scientists a clearer idea of what is really going wrong in tumors and thus points to possible treatments. The researchers already used their system to identify previously unrecognized immune system genes that are deleted in breast cancer cells, suggesting possible ways in which these aberrant cells avoid being detected and destroyed by the body’s natural defenses.

In some instances, genes that biologists thought were being turned "on" or "off" by normal regulatory chemicals within cells may actually have been added or deleted, said Troyanskaya. When a group of genes appears to be turned on or off together, biologists often look for a master regulator that controls them all at once. "They can write whole papers about how interesting it is that they are regulated together, when in fact what is happening is that the whole chunk of the chromosome containing those genes has just been amplified."

The work also may help scientists understand the molecular basis of evolution. Additions and deletions within chromosomes are a bold method that cells use to alter their behavior under pressure from changing environments, such as marine organisms whose waters become saltier or bacterial pathogens trying to survive attacks from antibiotic drugs.

Troyanskaya came to Princeton in 2003 after earning a Ph.D. in biomedical informatics from Stanford University. Her work focuses on applying tools of computer science and statistics to questions concerning the regulation and function of genes. In September, Technology Review magazine, which is published by the Massachusetts Institute of Technology, announced that it included Troyanskaya in its annual list of 100 top innovators from around the world. The magazine cited her for creating computing techniques that "allowed her to identify genes involved in a host of diseases, including lymphoma, lung cancer and gastric cancer."

Troyanskaya and colleagues are continuing their work on chromosome additions and deletions by collaborating with cancer researchers to refine their search for alterations that are involved in tumor growth.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>