Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein protecting brain from toxins also blocks some chemotherapy from reaching tumors

11.10.2004


St. Jude studies showing that Mrp4 limits penetration of topotecan suggest that blocking this protein might increase access of anti-cancer drugs to tumor sites and improve treatment of brain cancer



A protein called Mrp4 blocks the access of the anti-cancer drug topotecan into the brain by transporting this agent back into the bloodstream, thus reducing the ability of this agent to reach tumors. Results from a series of studies by investigators at St. Jude Children’s Research Hospital are published in a recent issue of Molecular and Cellular Biology (MCB).

The St. Jude team, which developed a mouse model lacking the Mrp4 protein, says study results in both mice and tissue cultures suggest that the therapeutic efficacy of drugs targeting central nervous system tumors might be improved by inhibiting this protein, a type of molecule called an ABC-dependent transporter.


The study showed that Mrp4 works at two levels: by binding to topotecan and transporting it away from the brain Mrp4 restricts the drug’s penetration into the brain from the bloodstream; and it protects brain cells from accumulating toxic levels of topotecan molecules that do escape the bloodstream. "The ability of Mrp4 to protect the brain from toxins can be a liability in people with brain cancer when this protein also blocks therapeutic drugs from reaching CNS tumors," said John Scheutz, Ph.D., an associate member of the St. Jude Department of Pharmaceutical Sciences. Schuetz is senior author of the article.

The investigators discovered that when topotecan was injected into the veins of specially bred mice that lack Mrp4, the drug accumulated to greater than normal levels in the brain tissue and the fluid that surrounds the brain--the cerebrospinal fluid (CSF). The finding strongly suggests that the natural role of Mrp4 is to block the passage of certain toxic molecules, which chemically resemble topotecan, from leaving the bloodstream and entering the brain. The cells lining the walls of brain capillaries are tightly joined to form a barrier that prevents most substances from leaving the blood. This cellular barrier, called the blood-brain barrier, prevents certain substances from leaving the bloodstream and entering the brain. Mrp4 in the blood-brain barrier also prevents substances from entering the brain by transporting them back into the blood as they pass into the cells of this barrier.

Using antibodies against Mrp4 the investigators found that this protein is located in the brain’s capillaries as well as in membranes of the choroid plexus--the folds within the brain ventricles that make and release CSF. "This dual location for Mrp4 is unusual for this type of transporter," Schuetz said. "It suggests that Mrp4 blocks specific molecules from leaving the capillaries. And if such molecules slip out of the blood into the choroid plexus, Mrp4 shuttles them back out of the brain and into the blood before they can cause damage."

The investigators also showed that isolated cells that were modified to over-express Mrp4 did not accumulate as much topotecan as cells lacking this protein. This is strong evidence that over-expression of Mrp4 in tumors contributes to topotecan resistance in patients. "Our work has important implications for therapies that target brain tumors with specific types of drugs that are transported by Mrp4," Schuetz said. "There is an expanding array of these types of drugs being developed; and unless there is a way to block Mrp4 when giving these agents, the effectiveness of these new agents could be significantly compromised."

Other authors of this study are Markos Leggas, Masashi Adachi, Daxi Sun, Guoqing Du, Kelly E. Mercer, Yanli Zhuang, John C. Panetta, Brad Johnston and Clinton F. Stewart (St. Jude); George L. Scheffer and Rik J. Scheper (VU Medical Center, Amsterdam, The Netherlands); and Peter Wielinga (The Netherlands Cancer Institute, Amsterdam).

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>