Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein protecting brain from toxins also blocks some chemotherapy from reaching tumors

11.10.2004


St. Jude studies showing that Mrp4 limits penetration of topotecan suggest that blocking this protein might increase access of anti-cancer drugs to tumor sites and improve treatment of brain cancer



A protein called Mrp4 blocks the access of the anti-cancer drug topotecan into the brain by transporting this agent back into the bloodstream, thus reducing the ability of this agent to reach tumors. Results from a series of studies by investigators at St. Jude Children’s Research Hospital are published in a recent issue of Molecular and Cellular Biology (MCB).

The St. Jude team, which developed a mouse model lacking the Mrp4 protein, says study results in both mice and tissue cultures suggest that the therapeutic efficacy of drugs targeting central nervous system tumors might be improved by inhibiting this protein, a type of molecule called an ABC-dependent transporter.


The study showed that Mrp4 works at two levels: by binding to topotecan and transporting it away from the brain Mrp4 restricts the drug’s penetration into the brain from the bloodstream; and it protects brain cells from accumulating toxic levels of topotecan molecules that do escape the bloodstream. "The ability of Mrp4 to protect the brain from toxins can be a liability in people with brain cancer when this protein also blocks therapeutic drugs from reaching CNS tumors," said John Scheutz, Ph.D., an associate member of the St. Jude Department of Pharmaceutical Sciences. Schuetz is senior author of the article.

The investigators discovered that when topotecan was injected into the veins of specially bred mice that lack Mrp4, the drug accumulated to greater than normal levels in the brain tissue and the fluid that surrounds the brain--the cerebrospinal fluid (CSF). The finding strongly suggests that the natural role of Mrp4 is to block the passage of certain toxic molecules, which chemically resemble topotecan, from leaving the bloodstream and entering the brain. The cells lining the walls of brain capillaries are tightly joined to form a barrier that prevents most substances from leaving the blood. This cellular barrier, called the blood-brain barrier, prevents certain substances from leaving the bloodstream and entering the brain. Mrp4 in the blood-brain barrier also prevents substances from entering the brain by transporting them back into the blood as they pass into the cells of this barrier.

Using antibodies against Mrp4 the investigators found that this protein is located in the brain’s capillaries as well as in membranes of the choroid plexus--the folds within the brain ventricles that make and release CSF. "This dual location for Mrp4 is unusual for this type of transporter," Schuetz said. "It suggests that Mrp4 blocks specific molecules from leaving the capillaries. And if such molecules slip out of the blood into the choroid plexus, Mrp4 shuttles them back out of the brain and into the blood before they can cause damage."

The investigators also showed that isolated cells that were modified to over-express Mrp4 did not accumulate as much topotecan as cells lacking this protein. This is strong evidence that over-expression of Mrp4 in tumors contributes to topotecan resistance in patients. "Our work has important implications for therapies that target brain tumors with specific types of drugs that are transported by Mrp4," Schuetz said. "There is an expanding array of these types of drugs being developed; and unless there is a way to block Mrp4 when giving these agents, the effectiveness of these new agents could be significantly compromised."

Other authors of this study are Markos Leggas, Masashi Adachi, Daxi Sun, Guoqing Du, Kelly E. Mercer, Yanli Zhuang, John C. Panetta, Brad Johnston and Clinton F. Stewart (St. Jude); George L. Scheffer and Rik J. Scheper (VU Medical Center, Amsterdam, The Netherlands); and Peter Wielinga (The Netherlands Cancer Institute, Amsterdam).

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>