Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory chemists develop bacteria that may help decaffeinate coffee

11.10.2004


Chemists at Emory University have made an important advance in harnessing the ability of bacteria to make new molecules, and their discovery could eventually lead to the creation of naturally decaffeinated coffee plants. The research, by Emory chemist Justin Gallivan and graduate student Shawn Desai, is scheduled to appear in the Oct. 27 edition of the Journal of the American Chemical Society.



Bacteria are terrific chemists, but they normally synthesize only molecules they need for their own survival, says Gallivan. His research team is interested in making bacteria synthesize molecules that they would otherwise not make on their own, resulting in molecules that may someday benefit humans. The Emory team reasoned that if a bacterium needs a particular molecule to survive, it has a strong incentive to help make it, so the goal was to make bacteria depend on a molecule that they wouldn’t normally need.

In their first major breakthrough, the Emory researchers have coupled the life of a bacterium to the presence of theophylline, a compound that is used to treat asthma, and is produced by the breakdown of caffeine in both coffee and tea plants. One of the reasons that coffee has a high level of caffeine is that in the plant, caffeine is synthesized very quickly, but breaks down to theophylline very slowly.


"We know that there is an enzyme that breaks caffeine down into theophylline, but we don’t know much about it," says Gallivan, an assistant professor of chemistry. "What we do know is that it works very slowly. Ideally, we would like to speed it up a bit so that we could create coffee plants that are low in caffeine. That’s where the bacteria come in. They now need the breakdown product of the enzyme (theophylline) for survival, but they can’t do much with caffeine."

Gallivan says that the idea is to supply these bacteria with caffeine, and give each bacterium a piece of DNA from coffee plants that may encode the enzyme that will allow the bacterium to convert the caffeine to the theophylline it needs to survive.

"At the end of the day, we will know that all of the surviving bacteria have ’learned’ to convert caffeine to theophylline, and thus have the enzyme that we’re interested in. We can then learn about the enzyme and how it works," Gallivan says. "We hope to use a process known as ’directed evolution’ to help speed up the enzyme to break down caffeine faster. Since the bacteria need theophylline for their survival, they’re partners in the whole process." Eventually, the faster enzyme could be introduced into coffee plants to produce decaffeinated coffee, he says.

To develop bacteria that are addicted to theophylline, Gallivan and Desai used a piece of the genetic material RNA, known as an aptamer, which was known to bind to theophylline tightly. The remaining challenge was to couple this binding to a vital function of the bacteria -- the production of a protein. To do this, the Emory team created a new sequence of RNA known as a "riboswitch."

In bacteria, riboswitches normally recognize essential molecules, such as vitamin B12, and switch the production of proteins on or off. The Emory team created a synthetic riboswitch that recognizes theophylline, and turns on the production of a protein known as "cat" which allows the cells to survive in the presence of an antibiotic known as chloramphenicol. Most bacteria die when exposed to chloramphenicol. However, bacteria containing the synthetic riboswitch survive when exposed to chloramphenicol as long as theophylline is present because theophylline turns on the production of the "cat" protein.

Gallivan says not to expect good-tasting, naturally decaffeinated coffee anytime soon. "We’re still at the earliest stages of this work. There are many hurdles to overcome," he says. "As a scientist, I’m excited about the future. As a caffeinated coffee addict, part of me is not in a hurry to solve this one."

Beverly Cox Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>