Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists see ubiquitin-modified proteins in living cells

11.10.2004


New technology makes visualization possible



Researchers at the University of Michigan Medical School and Howard Hughes Medical Institute have found a way to see proteins in cells that have been tagged by a molecular "sticky note" called ubiquitin. "This technology allows us to see, under a microscope, proteins modified by ubiquitin inside the cell," says Tom K. Kerppola, Ph.D., an associate professor of biological chemistry in the Medical School and an HHMI associate investigator. "Visualization gives us a direct connection to cellular processes that we could only study in test tubes or indirectly before."

In a paper published online this week in the early edition of the Proceedings of the National Academy of Sciences, Kerppola and Deyu Fang, M.D., Ph.D., a U-M research investigator, describe the first use of a technology called ubiquitin-mediated fluorescence complementation to study a cell-signaling mechanism called ubiquitination.


In this process, a small peptide called ubiquitin is linked to a protein in ways that can change the protein’s function and location within the cell. Originally, scientists thought ubiquitin was simply a universal "destroy me" signal for unneeded or harmful proteins, but it has recently been found to be associated with many other cellular functions. "The same ubiquitin signal can cause one protein to be degraded, but another protein to be moved to a new location," Kerppola says. "We’re interested in learning how this works."

In their PNAS paper, Kerppola and Fang describe how ubiquitin latched onto Jun - a protein involved in cell growth and gene transcription – and moved Jun from its usual location in the cell’s nucleus into hollow spheres called lysosomes in the cytoplasm outside the nucleus. Filled with digestive enzymes, lysosomes break down unwanted proteins into amino acids the cell recycles to make new proteins. "Jun’s function in the nucleus is transient and time-dependent," Kerppola says. "If it’s turned on and doesn’t get turned off, that’s not normal. Prolonged signaling causes aberrant growth and other problems for the cell."

"When ubiquitin is attached to Jun, the complex is transported to the lysosome getting it away from DNA in the nucleus and preventing Jun from continuing its normal gene transcription function," he adds. "This is a new way for the cell to eliminate the function of a transcription factor."

U-M scientists also discovered that an E3 ligase binding enzyme called Itch was a key player in the process. "Itch is the adapter," Kerppola says. "It tags Jun with ubiquitin, and is necessary for the protein to be targeted to the lysosome."

If Itch doesn’t recognize Jun, Kerppola explains, the level of Jun builds up in the cell, which can alter the regulation of gene transcription and cell growth. "Applying ubiquitin-mediated fluorescence technology to Jun made it possible to discover new information on how Jun turnover is controlled in cells," Kerppola says.

The technology uses complementary fragments of a fluorescent protein, which are fused to ubiquitin and to the target protein being studied. When ubiquitin is linked to the target protein, the fragments of the fluorescent protein come together and produce a bright spot of glowing color, which can be seen with a fluorescence microscope. This allows scientists to determine the location of the ubiquitinated protein in the cell.

"Location is important," Kerppola adds, "because proteins must get to their sites of action in order to do their jobs. Each protein must fulfill many different functions in different cells and in response to different stimuli. It is the variety of modifications and interactions with partners that enable the same protein to accomplish different tasks. With this technology, we are able to see the subpopulation of a protein that is modified by ubiquitin or interacts with a particular partner."

Scientists in Kerppola’s laboratory have used bimolecular fluorescence complementation methods to study protein interactions and signaling pathways, in addition to ubiquitination. While the technology should be generally applicable to most interactions, it does have some limitations. "The assay requires the two fragments of the fluorescent protein to come together," Kerppola says. "If they can’t get together, the assay doesn’t work. It’s quite good at identifying the location where something happens in the cell, but the timing of the interaction is more difficult to study, since it takes about an hour for the fluorescent proteins to become visible."

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>