Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists see ubiquitin-modified proteins in living cells

11.10.2004


New technology makes visualization possible



Researchers at the University of Michigan Medical School and Howard Hughes Medical Institute have found a way to see proteins in cells that have been tagged by a molecular "sticky note" called ubiquitin. "This technology allows us to see, under a microscope, proteins modified by ubiquitin inside the cell," says Tom K. Kerppola, Ph.D., an associate professor of biological chemistry in the Medical School and an HHMI associate investigator. "Visualization gives us a direct connection to cellular processes that we could only study in test tubes or indirectly before."

In a paper published online this week in the early edition of the Proceedings of the National Academy of Sciences, Kerppola and Deyu Fang, M.D., Ph.D., a U-M research investigator, describe the first use of a technology called ubiquitin-mediated fluorescence complementation to study a cell-signaling mechanism called ubiquitination.


In this process, a small peptide called ubiquitin is linked to a protein in ways that can change the protein’s function and location within the cell. Originally, scientists thought ubiquitin was simply a universal "destroy me" signal for unneeded or harmful proteins, but it has recently been found to be associated with many other cellular functions. "The same ubiquitin signal can cause one protein to be degraded, but another protein to be moved to a new location," Kerppola says. "We’re interested in learning how this works."

In their PNAS paper, Kerppola and Fang describe how ubiquitin latched onto Jun - a protein involved in cell growth and gene transcription – and moved Jun from its usual location in the cell’s nucleus into hollow spheres called lysosomes in the cytoplasm outside the nucleus. Filled with digestive enzymes, lysosomes break down unwanted proteins into amino acids the cell recycles to make new proteins. "Jun’s function in the nucleus is transient and time-dependent," Kerppola says. "If it’s turned on and doesn’t get turned off, that’s not normal. Prolonged signaling causes aberrant growth and other problems for the cell."

"When ubiquitin is attached to Jun, the complex is transported to the lysosome getting it away from DNA in the nucleus and preventing Jun from continuing its normal gene transcription function," he adds. "This is a new way for the cell to eliminate the function of a transcription factor."

U-M scientists also discovered that an E3 ligase binding enzyme called Itch was a key player in the process. "Itch is the adapter," Kerppola says. "It tags Jun with ubiquitin, and is necessary for the protein to be targeted to the lysosome."

If Itch doesn’t recognize Jun, Kerppola explains, the level of Jun builds up in the cell, which can alter the regulation of gene transcription and cell growth. "Applying ubiquitin-mediated fluorescence technology to Jun made it possible to discover new information on how Jun turnover is controlled in cells," Kerppola says.

The technology uses complementary fragments of a fluorescent protein, which are fused to ubiquitin and to the target protein being studied. When ubiquitin is linked to the target protein, the fragments of the fluorescent protein come together and produce a bright spot of glowing color, which can be seen with a fluorescence microscope. This allows scientists to determine the location of the ubiquitinated protein in the cell.

"Location is important," Kerppola adds, "because proteins must get to their sites of action in order to do their jobs. Each protein must fulfill many different functions in different cells and in response to different stimuli. It is the variety of modifications and interactions with partners that enable the same protein to accomplish different tasks. With this technology, we are able to see the subpopulation of a protein that is modified by ubiquitin or interacts with a particular partner."

Scientists in Kerppola’s laboratory have used bimolecular fluorescence complementation methods to study protein interactions and signaling pathways, in addition to ubiquitination. While the technology should be generally applicable to most interactions, it does have some limitations. "The assay requires the two fragments of the fluorescent protein to come together," Kerppola says. "If they can’t get together, the assay doesn’t work. It’s quite good at identifying the location where something happens in the cell, but the timing of the interaction is more difficult to study, since it takes about an hour for the fluorescent proteins to become visible."

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>