Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell’s memory may offer long-term immunity to leishmaniasis

08.10.2004


Researchers at the University of Pennsylvania have discovered a "central memory" form of "helper" T cells that can offer immunity to leishmaniasis, a disease that causes considerable death and disfigurement across the globe and has been found in U.S. military personnel returning from Afghanistan and Iraq.



In the October issue of Nature Medicine, the Penn researchers describe how the discovery can offer immunity to leishmaniasis, even without the persistent presence of the parasite that caused the disease. Their findings encourage a new approach to creating a vaccine against leishmaniasis and other immune cell mediated diseases such as tuberculosis and HIV/AIDS.

Attempts to create a vaccine for leishmaniasis have long been stymied by the fact that the helper T cells, which coordinate the immune response against a pathogen, need constant stimulation from the pathogen in order to remain effective against the disease. "Without the persistent attack from the Leishmania parasite, the immune system does not keep protective CD4+ T cells in place," said Phillip Scott, professor and chair of the Department of Pathobiology at Penn’s School of Veterinary Medicine. "The strategy of most vaccines, to ’teach’ the immune system to remember a pathogen, just doesn work with leishmaniasis.


"We have found that a new form of long-term memory T cell will, if stimulated, turn into the sort of helper T cells that mediate the immune response. We believe that, if we can stimulate the expansion of these central memory T cells, we ought to be able to create an effective vaccine."

Leishmaniasis is a parasitic disease spread by the bite of sand flies infected with the protozoan Leishmania. While the disease is most common in North Africa, the Middle East and Asia, it has been recently been seen in United States military personnel who have served in Afghanistan and Iraq.

According to the Centers for Disease Control, each year the world sees 1.5 million new cases of cutaneous leishmaniasis, which infects the skin, causing scarring boils, and 500,000 new cases of visceral leishmaniasis, which infects internal organs, causing death if left untreated.

Particularly vexing to researchers has been the fact that while people who recover from leishmaniasis generally develop lifelong immunity to reinfection, this has been thought to depend upon the continued presence of the Leishmania parasite. Indeed, it has been shown in mice that if the parasite is entirely removed, the host can become reinfected with disease.

Scott and his colleagues wondered if, despite the apparent loss of immunity when the parasites disappeared, there were any T cells that still retained memory of Leishmania. Recent studies have shown that memory T cells may be of more than one type. One type, which is less activated and found in the lymph nodes, is called central memory T cells. Since little is known about CD4+ T cell memory during chronic disease, the Penn researchers set out to find if such central memory cells exist in leishmaniasis.

The hunt for the theoretical CD4+ central memory T cells began by transferring T cells from mice infected with leishmaniasis to mice who had never faced the disease. According to Scott, some of the transferred T cells went to the lymph nodes, and had the characteristics of central memory cells.

"We see that these central memory T cells but not the effector T cells persist in the absence of obvious parasites for as long as five months," Scott said. "Since we still do not know much about these new T cells, our next step is to find out how we can encourage the proliferation of central memory cells and stimulate them to fight disease."

According to Scott, a better understanding of central memory T cells may lead to the development of vaccines that fight off a range of pathogens that respond well to a helper T cell response.

Funding for this research was provided through grants from the National Institutes of Health

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>