Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


T cell’s memory may offer long-term immunity to leishmaniasis


Researchers at the University of Pennsylvania have discovered a "central memory" form of "helper" T cells that can offer immunity to leishmaniasis, a disease that causes considerable death and disfigurement across the globe and has been found in U.S. military personnel returning from Afghanistan and Iraq.

In the October issue of Nature Medicine, the Penn researchers describe how the discovery can offer immunity to leishmaniasis, even without the persistent presence of the parasite that caused the disease. Their findings encourage a new approach to creating a vaccine against leishmaniasis and other immune cell mediated diseases such as tuberculosis and HIV/AIDS.

Attempts to create a vaccine for leishmaniasis have long been stymied by the fact that the helper T cells, which coordinate the immune response against a pathogen, need constant stimulation from the pathogen in order to remain effective against the disease. "Without the persistent attack from the Leishmania parasite, the immune system does not keep protective CD4+ T cells in place," said Phillip Scott, professor and chair of the Department of Pathobiology at Penn’s School of Veterinary Medicine. "The strategy of most vaccines, to ’teach’ the immune system to remember a pathogen, just doesn work with leishmaniasis.

"We have found that a new form of long-term memory T cell will, if stimulated, turn into the sort of helper T cells that mediate the immune response. We believe that, if we can stimulate the expansion of these central memory T cells, we ought to be able to create an effective vaccine."

Leishmaniasis is a parasitic disease spread by the bite of sand flies infected with the protozoan Leishmania. While the disease is most common in North Africa, the Middle East and Asia, it has been recently been seen in United States military personnel who have served in Afghanistan and Iraq.

According to the Centers for Disease Control, each year the world sees 1.5 million new cases of cutaneous leishmaniasis, which infects the skin, causing scarring boils, and 500,000 new cases of visceral leishmaniasis, which infects internal organs, causing death if left untreated.

Particularly vexing to researchers has been the fact that while people who recover from leishmaniasis generally develop lifelong immunity to reinfection, this has been thought to depend upon the continued presence of the Leishmania parasite. Indeed, it has been shown in mice that if the parasite is entirely removed, the host can become reinfected with disease.

Scott and his colleagues wondered if, despite the apparent loss of immunity when the parasites disappeared, there were any T cells that still retained memory of Leishmania. Recent studies have shown that memory T cells may be of more than one type. One type, which is less activated and found in the lymph nodes, is called central memory T cells. Since little is known about CD4+ T cell memory during chronic disease, the Penn researchers set out to find if such central memory cells exist in leishmaniasis.

The hunt for the theoretical CD4+ central memory T cells began by transferring T cells from mice infected with leishmaniasis to mice who had never faced the disease. According to Scott, some of the transferred T cells went to the lymph nodes, and had the characteristics of central memory cells.

"We see that these central memory T cells but not the effector T cells persist in the absence of obvious parasites for as long as five months," Scott said. "Since we still do not know much about these new T cells, our next step is to find out how we can encourage the proliferation of central memory cells and stimulate them to fight disease."

According to Scott, a better understanding of central memory T cells may lead to the development of vaccines that fight off a range of pathogens that respond well to a helper T cell response.

Funding for this research was provided through grants from the National Institutes of Health

Greg Lester | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>