Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model Shows Calcium Control Is Key for Synapse Homeostasis

08.10.2004


When memories are made and learning occurs, the connections between brain cells change. Scientists know that an influx of calcium is critical to this process. A theoretical model developed by a Brown University research team shows that cells’ ability to fine-tune this calcium flow not only sparks changes in synapses but also allows cells to maintain a working state of equilibrium.



A research team based at Brown University has created a theoretical model that may shed light on a brain science mystery: What happens to cells when humans learn and remember?

Luk Chong Yeung, a neuroscience research associate, and her colleagues have come up with a concept that hinges on calcium control. Certain receptors, which act like gates, allow calcium to rush into brain cells that receive memory-making information. Once inside these cells, calcium sets off chemical reactions that change the connections between neurons, or synapses. That malleability, known as synaptic plasticity, is believed to be the fundamental basis of memory, learning and brain development.


The Brown team showed that the control of these receptors not only makes synapses stronger or weaker, but also stabilizes them - without interfering with the richness of the cellular response to signals sent from neighboring cells. Their model appears in the current online early edition of the Proceedings of the National Academy of Sciences. "The beauty of the brain is that it is plastic and robust at the same time," Luk Chong said. "If the model is verified experimentally, we’ve solved an important piece of the puzzle of how these seemingly antagonistic properties can and, in fact must, coexist in the cell." When Luk Chong helped create the model, she was a Brown graduate student pursing her doctoral degree in physics and working at the Institute for Brain and Neural Systems, a research laboratory run by Nobel Prize-winning physicist Leon Cooper.

Two years ago, institute scientists developed a model where N-methyl-D-aspartate receptors control the flow of calcium into signal-receiving neurons. They showed that the model unified several observations of synaptic plasticity and, after being tested in labs, it is seen as the standard model by many researchers in the field. But the model had a flaw. Although it explained how synapses get stronger or weaker, it didn’t account for how synapses stabilize. Without homeostasis, synapses could grow indefinitely - an impossible scenario. So Luk Chong and her colleagues began working on a new version.

They based their model on experimental data as well as mathematical equations. Then Luk Chong applied the model to a simulated brain cell receiving signals from competing synapses. She found that the theory held up: Regulating the flow of calcium into cells allows not only for rapid synaptic changes that capture the transient features of the signal, but also slows homeostatic control that returns the cell to a steady state. "The key feature of the model is that, unlike many neural learning theories, it is built on real quantities that can be measured in the lab," Luk Chong said. "But the basic principles are universal enough to be applied to any stable plasticity model."

The research team included Cooper, a professor of physics and neuroscience at Brown; Harel Shouval, an assistant professor of neurobiology and anatomy at the University of Texas Medical School at Houston; and Brian Blais, a professor of physics at Bryant College.

The Burroughs Wellcome Fund and the Galkin Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>