Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model Shows Calcium Control Is Key for Synapse Homeostasis

08.10.2004


When memories are made and learning occurs, the connections between brain cells change. Scientists know that an influx of calcium is critical to this process. A theoretical model developed by a Brown University research team shows that cells’ ability to fine-tune this calcium flow not only sparks changes in synapses but also allows cells to maintain a working state of equilibrium.



A research team based at Brown University has created a theoretical model that may shed light on a brain science mystery: What happens to cells when humans learn and remember?

Luk Chong Yeung, a neuroscience research associate, and her colleagues have come up with a concept that hinges on calcium control. Certain receptors, which act like gates, allow calcium to rush into brain cells that receive memory-making information. Once inside these cells, calcium sets off chemical reactions that change the connections between neurons, or synapses. That malleability, known as synaptic plasticity, is believed to be the fundamental basis of memory, learning and brain development.


The Brown team showed that the control of these receptors not only makes synapses stronger or weaker, but also stabilizes them - without interfering with the richness of the cellular response to signals sent from neighboring cells. Their model appears in the current online early edition of the Proceedings of the National Academy of Sciences. "The beauty of the brain is that it is plastic and robust at the same time," Luk Chong said. "If the model is verified experimentally, we’ve solved an important piece of the puzzle of how these seemingly antagonistic properties can and, in fact must, coexist in the cell." When Luk Chong helped create the model, she was a Brown graduate student pursing her doctoral degree in physics and working at the Institute for Brain and Neural Systems, a research laboratory run by Nobel Prize-winning physicist Leon Cooper.

Two years ago, institute scientists developed a model where N-methyl-D-aspartate receptors control the flow of calcium into signal-receiving neurons. They showed that the model unified several observations of synaptic plasticity and, after being tested in labs, it is seen as the standard model by many researchers in the field. But the model had a flaw. Although it explained how synapses get stronger or weaker, it didn’t account for how synapses stabilize. Without homeostasis, synapses could grow indefinitely - an impossible scenario. So Luk Chong and her colleagues began working on a new version.

They based their model on experimental data as well as mathematical equations. Then Luk Chong applied the model to a simulated brain cell receiving signals from competing synapses. She found that the theory held up: Regulating the flow of calcium into cells allows not only for rapid synaptic changes that capture the transient features of the signal, but also slows homeostatic control that returns the cell to a steady state. "The key feature of the model is that, unlike many neural learning theories, it is built on real quantities that can be measured in the lab," Luk Chong said. "But the basic principles are universal enough to be applied to any stable plasticity model."

The research team included Cooper, a professor of physics and neuroscience at Brown; Harel Shouval, an assistant professor of neurobiology and anatomy at the University of Texas Medical School at Houston; and Brian Blais, a professor of physics at Bryant College.

The Burroughs Wellcome Fund and the Galkin Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>