Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale scientists find cooperative RNA switches in nature

08.10.2004


Research at Yale reported in the journal Science identifies a new riboswitch (RNA regulatory sequence) class in bacteria that operates as a rare "ON" switch for genetic regulation of the three proteins in a glycine processing system.



"This seems like something only a biochemist can appreciate, but what it really means is that modern RNA has what it takes to run the complex metabolism of life. It is like what would have been needed in an "RNA World" - or a period in evolution where RNA served a much larger role," said Ronald T. Breaker, professor in the Department of Molecular, Cellular and Developmental Biology at Yale University.

The latest riboswitch is unique because it is the first RNA switch known to have "cooperative binding" to its target, a process that is common in protein enzymes but not usually associated with RNA. It is also surprising that such complex relics of an RNA World are seen in modern organisms.


Breaker and his research team have pioneered the field of riboswitches and reported the existence of nine classes, so far. Earlier this year they reported in the journal Nature on a class of riboswitch that are ribozymes and catalyze their own feedback loop. The work received the highest all time rating of a peer-reviewed scientific paper by the Faculty of 1000, an on-line web resource where top researcher from around the world rank scientific publications

Breaker’s research, testing theories about how life began, led to the synthesis of "RNA switches" that respond to various target compounds, including several molecules of basic metabolism. They speculated that, if an RNA World theory were true, then RNA molecules most likely would make great molecular switches. After creating RNA switches in the lab, including using a process that simulates Darwinian evolution in the test tube, they looked for naturally occurring riboswitches.

Other authors on this paper include Maumita Mandall, Mark Lee, Jeffrey Barrick and Gail Mitchell Emilsson from Yale and Zasha Weinberg and Walter L. Russo from the University of Washington. The work was supported by grants from the National Institutes of Health, the National Science Foundation, the Yale Liver Center and the David and Lucille Packard Foundation.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>