Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botulism bug says no to nitric oxide, provides key to molecule’s role in human cell signaling

08.10.2004


A deadly bacterium’s defense against a mortal molecular enemy illuminates the origins and structure of a vital protein involved in human cell signaling, University of Texas Medical School scientists report today in Science Express, the rapid online publication forum for the journal Science.



The paper also details how evolution transformed one of nature’s simplest molecules, nitric oxide (NO), from a toxin to anaerobic bacteria – the planet’s oldest life form – into a beneficial signaling molecule in higher animals. It also offers an explanation for how the decades-old practice of treating meat with sodium nitrite prevents life-threatening food poisoning known as botulism.

Discovering how botulism-causing Clostridium botulinum detects nitric oxide (NO) sheds light on how NO connects with its receptor protein in humans to govern crucial processes in the cardiovascular, neurological and immunological systems, said senior author C. S. Raman, Ph.D., assistant professor and director of the Structural Biology Research Center in the UT Medical School Department of Biochemistry and Molecular Biology.


"We started by identifying the protein that the botulism bug uses to detect and evade NO," Raman said. "What we have ultimately shown is how this protein evolved from being part of a protective mechanism into a system that learned to use the toxin to benefit the organism."

In human beings, nitric oxide binds to a receptor called soluble guanylyl cyclase to make cyclic GMP, a molecule that improves blood flow by relaxing blood vessel walls. Ferid Murad, M.D., Ph.D., professor and chairman of Integrative Biology and Pharmacology at the UT Medical School at Houston, won the Nobel prize for his 1977 finding that NO is the ingredient that makes nitroglycerine beneficial to heart patients. Since then NO has been found to govern many other vital biological functions and became the basis for medications that treat erectile dysfunction. However, the structural details of soluble guanylyl cyclase have remained elusive, Murad and Raman said. The protein is difficult to crystallize for structural analysis.

During a series of experiments that tracked the evolutionary development of the sensor protein identified in C. botulinum, dubbed SONO for "sensor of NO," the scientists were able to determine the three-dimensional structure of a related nitric oxide sensor in a different bacterium. That structure will provide a key to unlock answers to some questions regarding the human NO receptor, soluble guanylyl cyclase (sGC), Raman said. "Having these structures now will help us attack that problem, because we know that this bacterial version of SONO is very similar to soluble guanylyl cyclase. "If you know the structure of a protein, then you can develop therapeutics targeted to detect specific binding pockets on the molecule," Raman said. "That may allow us to control sGC activity in the absence of nitric oxide in such a way that we can combat cardiovascular and cerebrovascular disease."

And don’t forget meat protection. The research team showed that C. botulinum uses SONO to detect nitric oxide, and then to flee its presence. "It’s a strange topic for a strict vegetarian who has never touched meat in his life," Raman said.

Co-authors of the paper are: First author Pierre Nioche, Ph.D., research fellow in the Structural Biology Research Center; Vladimir Berka, Ph.D., senior research associate and Ah-Lim Tsai, Ph.D., professor, both of the Medical School Division of Hematology; and from the United Kingdom, Julia Vipond of the Health Protection Agency, Porton Down, Salisbury; and Nigel Minton of the Center of Biomolecular Sciences and Institute of Infection, Immunity and Inflammation, University of Nottingham.

Scott Merville | EurekAlert!
Further information:
http://www.uthouston.edu
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>