Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cells correct congenital heart defect in mouse embryos

08.10.2004


Can signal neighbor cells to repair



A study published in the October 8 issue of Science describes a previously unsuspected capacity of embryonic stem cells to influence neighboring defective cells and restore their capacity to function normally. Researchers at Memorial Sloan-Kettering Cancer Center report that 15 embryonic stem cells injected into early embryos of mice whose hearts were genetically predisposed to develop a lethal defect, rescued the heart from developing the disorder by not only producing normal daughter cells that were incorporated into the defective embryonic heart but also by releasing biological factors into the nearby vicinity. This prevented neighboring heart cells from developing into defective tissue.

"In other words, stem cells act like nurses, restoring ’sick’ cells to health" said Robert Benezra, Ph.D., a Member in the Cancer Biology and Genetics Program at Memorial Sloan-Kettering Cancer Center and the study’s senior author. "The result was that fifty-percent of the mice fated to die in the womb were born with healthy hearts."


In previous studies, Dr. Benezra and colleagues demonstrated a relationship between the presence of a specific protein called Id during embryonic growth and the normal development of capillaries and blood vessels. Mice engineered without this protein, called Id "knock-out" mice, display severe cardiac defects and die at mid-gestation. "In this current study, with the repair of congenital heart defects in our Id knockout embryos, we observed that the stem cells provided normal signals to themselves and also to their neighbor cells to correct the organ as a whole," explained Diego Fraidenraich, Ph.D., the study’s lead author.

The researchers also found a relationship between the Id protein and stem cells. "We found that stem cells are critically dependent on the Id protein for self-renewal and differentiation," added Dr. Benezra. "A reduction of just 15-20 percent of the Id protein impairs the stem cells’ ability to rescue these embryonic mouse heart cells. These cells are very powerful, but also apparently very delicate." To understand the molecular basis of the rescue, the authors identified two important molecules implicated in signaling from the ES cells to the Id knock-out cells. These molecules are insulin-like growth factor 1 (IGF-I) and WNT5a. The former molecule is a long-range acting factor, and the latter is a short-range factor and a member of the family of WNT proteins. Both molecules are implicated in heart development and cancer.

The authors demonstrated that IGF-I injected into the mother can cross the placenta and influence fetal cardiac development in the Id knock-out embryo. The Id knock-out embryos were born, but with partial rescue of cardiac defects and abnormal gene expression profiles. As a result, Id knock-out pups whose mothers were manipulated bypassed mid-gestation lethality, although they died during the first two days of life. On the other hand, WNT5a had the ability to correct the abnormal gene expression profiles of the Id knock-out hearts to normal levels. These two mechanisms (long- and short- range action) in conjunction may account for the full correction of the cardiac defects.

The study was co-authored by Elizabeth E. Stillwell, PhD, Elizabeth E. Romero and Katia Manova, PhD from Memorial Sloan-Kettering Cancer Center, and Craig T. Basson, MD, PhD and David Wilkes, PhD from Weill Medical College of Cornell University.

The National Institutes of Health has supported this research, by funding Dr. Diego Fraidenraich through a mentored minority faculty development award (Heart, Lung and Blood Institute) and Dr. Robert Benezra (National Cancer Institute). Dr. Basson is an Established Investigator of the American Heart Association and is also funded by the Snart Cardiovascular Fund.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>