Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cells correct congenital heart defect in mouse embryos

08.10.2004


Can signal neighbor cells to repair



A study published in the October 8 issue of Science describes a previously unsuspected capacity of embryonic stem cells to influence neighboring defective cells and restore their capacity to function normally. Researchers at Memorial Sloan-Kettering Cancer Center report that 15 embryonic stem cells injected into early embryos of mice whose hearts were genetically predisposed to develop a lethal defect, rescued the heart from developing the disorder by not only producing normal daughter cells that were incorporated into the defective embryonic heart but also by releasing biological factors into the nearby vicinity. This prevented neighboring heart cells from developing into defective tissue.

"In other words, stem cells act like nurses, restoring ’sick’ cells to health" said Robert Benezra, Ph.D., a Member in the Cancer Biology and Genetics Program at Memorial Sloan-Kettering Cancer Center and the study’s senior author. "The result was that fifty-percent of the mice fated to die in the womb were born with healthy hearts."


In previous studies, Dr. Benezra and colleagues demonstrated a relationship between the presence of a specific protein called Id during embryonic growth and the normal development of capillaries and blood vessels. Mice engineered without this protein, called Id "knock-out" mice, display severe cardiac defects and die at mid-gestation. "In this current study, with the repair of congenital heart defects in our Id knockout embryos, we observed that the stem cells provided normal signals to themselves and also to their neighbor cells to correct the organ as a whole," explained Diego Fraidenraich, Ph.D., the study’s lead author.

The researchers also found a relationship between the Id protein and stem cells. "We found that stem cells are critically dependent on the Id protein for self-renewal and differentiation," added Dr. Benezra. "A reduction of just 15-20 percent of the Id protein impairs the stem cells’ ability to rescue these embryonic mouse heart cells. These cells are very powerful, but also apparently very delicate." To understand the molecular basis of the rescue, the authors identified two important molecules implicated in signaling from the ES cells to the Id knock-out cells. These molecules are insulin-like growth factor 1 (IGF-I) and WNT5a. The former molecule is a long-range acting factor, and the latter is a short-range factor and a member of the family of WNT proteins. Both molecules are implicated in heart development and cancer.

The authors demonstrated that IGF-I injected into the mother can cross the placenta and influence fetal cardiac development in the Id knock-out embryo. The Id knock-out embryos were born, but with partial rescue of cardiac defects and abnormal gene expression profiles. As a result, Id knock-out pups whose mothers were manipulated bypassed mid-gestation lethality, although they died during the first two days of life. On the other hand, WNT5a had the ability to correct the abnormal gene expression profiles of the Id knock-out hearts to normal levels. These two mechanisms (long- and short- range action) in conjunction may account for the full correction of the cardiac defects.

The study was co-authored by Elizabeth E. Stillwell, PhD, Elizabeth E. Romero and Katia Manova, PhD from Memorial Sloan-Kettering Cancer Center, and Craig T. Basson, MD, PhD and David Wilkes, PhD from Weill Medical College of Cornell University.

The National Institutes of Health has supported this research, by funding Dr. Diego Fraidenraich through a mentored minority faculty development award (Heart, Lung and Blood Institute) and Dr. Robert Benezra (National Cancer Institute). Dr. Basson is an Established Investigator of the American Heart Association and is also funded by the Snart Cardiovascular Fund.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>