Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cells correct congenital heart defect in mouse embryos

08.10.2004


Can signal neighbor cells to repair



A study published in the October 8 issue of Science describes a previously unsuspected capacity of embryonic stem cells to influence neighboring defective cells and restore their capacity to function normally. Researchers at Memorial Sloan-Kettering Cancer Center report that 15 embryonic stem cells injected into early embryos of mice whose hearts were genetically predisposed to develop a lethal defect, rescued the heart from developing the disorder by not only producing normal daughter cells that were incorporated into the defective embryonic heart but also by releasing biological factors into the nearby vicinity. This prevented neighboring heart cells from developing into defective tissue.

"In other words, stem cells act like nurses, restoring ’sick’ cells to health" said Robert Benezra, Ph.D., a Member in the Cancer Biology and Genetics Program at Memorial Sloan-Kettering Cancer Center and the study’s senior author. "The result was that fifty-percent of the mice fated to die in the womb were born with healthy hearts."


In previous studies, Dr. Benezra and colleagues demonstrated a relationship between the presence of a specific protein called Id during embryonic growth and the normal development of capillaries and blood vessels. Mice engineered without this protein, called Id "knock-out" mice, display severe cardiac defects and die at mid-gestation. "In this current study, with the repair of congenital heart defects in our Id knockout embryos, we observed that the stem cells provided normal signals to themselves and also to their neighbor cells to correct the organ as a whole," explained Diego Fraidenraich, Ph.D., the study’s lead author.

The researchers also found a relationship between the Id protein and stem cells. "We found that stem cells are critically dependent on the Id protein for self-renewal and differentiation," added Dr. Benezra. "A reduction of just 15-20 percent of the Id protein impairs the stem cells’ ability to rescue these embryonic mouse heart cells. These cells are very powerful, but also apparently very delicate." To understand the molecular basis of the rescue, the authors identified two important molecules implicated in signaling from the ES cells to the Id knock-out cells. These molecules are insulin-like growth factor 1 (IGF-I) and WNT5a. The former molecule is a long-range acting factor, and the latter is a short-range factor and a member of the family of WNT proteins. Both molecules are implicated in heart development and cancer.

The authors demonstrated that IGF-I injected into the mother can cross the placenta and influence fetal cardiac development in the Id knock-out embryo. The Id knock-out embryos were born, but with partial rescue of cardiac defects and abnormal gene expression profiles. As a result, Id knock-out pups whose mothers were manipulated bypassed mid-gestation lethality, although they died during the first two days of life. On the other hand, WNT5a had the ability to correct the abnormal gene expression profiles of the Id knock-out hearts to normal levels. These two mechanisms (long- and short- range action) in conjunction may account for the full correction of the cardiac defects.

The study was co-authored by Elizabeth E. Stillwell, PhD, Elizabeth E. Romero and Katia Manova, PhD from Memorial Sloan-Kettering Cancer Center, and Craig T. Basson, MD, PhD and David Wilkes, PhD from Weill Medical College of Cornell University.

The National Institutes of Health has supported this research, by funding Dr. Diego Fraidenraich through a mentored minority faculty development award (Heart, Lung and Blood Institute) and Dr. Robert Benezra (National Cancer Institute). Dr. Basson is an Established Investigator of the American Heart Association and is also funded by the Snart Cardiovascular Fund.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>