Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dying cells encourage neighbors to grow


Researchers from The Rockefeller University have uncovered specific mechanisms by which cells that are genetically programmed to commit suicide stimulate growth in surrounding cells. The research, published online in Developmental Cell, provides new information about how normal, healthy tissues are maintained and may shed some light on a pathway that may contribute to tumor growth.

It has been known for some time that cells that die as a result of injury-provoked programmed cell death, also known as apoptosis, may stimulate the growth of surrounding cells. "Such compensatory mechanisms may be essential to allow for the elimination of as many damaged or dangerous cells as needed without compromising organismal fitness. In spite of its importance, the underlying mechanisms are poorly understood," explains study leader Dr. Hermann Steller.

Dr. Steller and colleagues demonstrate that when cells from the imaginal disc in the fruit fly Drosophila are stimulated to undergo apoptosis but experimentally manipulated so that they do not actually die ("undead cells"), they stimulate the growth of neighboring tissue. The researchers demonstrate that the undead cells promote cell growth in the surrounding imaginal disc by activating specific signaling cascades that are known to be required for cell proliferation. Although artificial, the experimental creation of undead cells allows this phenomenon to be expanded and studied. The authors provide evidence that apoptotic cells that are allowed to complete the process of dying also secrete the growth-stimulating signals.

The researchers conclude that apoptotic cells actively induce compensatory proliferation by activating growth-associated signaling pathways and secreting molecules that promote growth in surrounding tissues. They also suggest that abnormal regulation of apoptosis, as has been shown to be the case in some cancers, may result in pathological activation of these pathways. "Based on the behavior of undead cells in Drosophila imaginal discs, one might expect mutations that block or delay apoptosis to cause secondary proliferation and hyperplasia. It remains to be tested if such a mechanism contributes to hyperplasia in mouse models and human malignancies," offers Dr. Steller.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>