Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most promising clinical uses for stem cells from fat agreed on by international society

06.10.2004


While questions still remain about the nature and function of stem cells found in fat, a group of researchers and clinicians convened today in Pittsburgh at the Second Annual Meeting of the International Fat Applied Technology Society (IFATS) agreed that research should move forward with the ultimate goal of performing human clinical trials to test the cells’ therapeutic potential for specific indications.



Today concludes scientific sessions exploring how adipose tissue, or fat, can be an abundant source of stem cells that could be used for tissue engineering and regenerative medicine. An important outcome of the meeting was the development of a consensus defining key scientific questions for future study and determining the field’s most promising clinical applications.

More than 300,000 liposuction procedures are performed in the United States each year, producing about 150,000 gallons of fat that is normally discarded. In 2001, researchers first reported that such tissue contained stem cells, and since then, additional studies have suggested they can be coaxed into other cell types, such as nerve, bone, muscle and blood vessels; or it may be that they have properties of these cells. Some research has progressed more rapidly, with animal studies indicating potential for the development of treatments for heart attack or bone injury, for example, while results looking at other uses are still quite preliminary.


There are currently no human trials in the United States evaluating the potential of stem cells derived from fat, but in reaching consensus on the most promising clinical applications, those attending the IFATS meeting believe the first clinical attempts in patients should be for repairing or healing bone defects, promoting growth of blood vessels in tissues not receiving sufficient blood supply, and for treating acute or chronic cardiac and peripheral vascular diseases.

Moreover, the group felt the best use of the technology should be to develop therapies using patients’ own cells, as opposed to cells that might be donated by other individuals. Because adipose is both abundantly available and easily accessible, it offers a practical source of stem cells.

A key question the group answered was simply what to call the cells, with the decision in favor of the term adipose-derived stem cells, even though it also was agreed that these cells are most likely comprised of multiple cell populations – some that are capable of proliferation and differentiation and other groups consisting of mature cells. The society aims to develop common scientific methods in order to best compare results between studies, and believes that much of the research effort should be directed toward identifying the protein markers for adipose stem cells in order to better understand how they differentiate into other cell types and what factors they secrete.

In developing its consensus, the society focused on three main areas, with separate sessions addressing each. Leading discussions that addressed the biology of the cells was Patricia Zuk, Ph.D., research director, Regenerative Bioengineering and Repair Lab, at the David Geffen School of Medicine, University of California, Los Angeles. The session focusing on scientific methods was led by Jeffrey Gimble, M.D., Ph.D., a professor at the Pennington Biomedical Research Center at Louisiana State University. Discussions on clinical applications and opportunities were moderated by Keith March, M.D., Ph.D., director of the Indiana Center for Vascular Biology and Medicine and professor of medicine at the Indiana University School of Medicine.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>