Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory from University of Leicester scientists underpins drug development and food processing

05.10.2004


Scientists at the University of Leicester have shown that the textbook explanation of how enzymes work is wrong - at least for some enzymes.



Their discovery may explain why attempts to make artificial enzymes have often been disappointing. Industry must now re-think the rationale for the design of biological catalysts and its approaches to drug design. Enzymes are biological molecules that accelerate chemical reactions and are central to the existence of life. The new breakthrough that could revolutionise the application of enzymes in human well-being has been made at the University of Leicester.

Professors Nigel Scrutton and Michael Sutcliffe, of the Department of Biochemistry, have discovered a new phenomenon occurring at the atomic level that dictates how enzymes work. Their study of enzymes - which are vital for catalysis within industry - reveals that chemical reactions can proceed through energy barriers. This is contrary to received wisdom on how enzyme reactions work.


Professor Scrutton said: “Since the discovery of enzymes just over a century ago, we have witnessed an explosion in our understanding of enzyme catalysis, leading to a more detailed appreciation of how they work. However, despite the huge efforts to redesign enzyme molecules for specific applications (e.g. the synthesis of fine chemicals, food processing, bio sensing, brewing), progress in this area has been generally disappointing. This stems from our limited understanding of the subtleties by which enzymes enhance reaction rates. “Based on current dogma, the vast majority of studies have concentrated on understanding how enzymes facilitate passage of a reaction over an energy barrier. However, our studies have revealed that passage through, rather than over, the barrier can occur - a process that relies on quantum mechanical effects such as tunnelling.

Professor Sutcliffe added: “Quantum tunnelling is akin to traversing a landscape by tunnelling at the foot of a hill rather than walking over the summit. In the quantum world, small particles like the electron and hydrogen atom are able to ‘tunnel’ through energy barriers (or hills), and the Leicester team and demonstrated this occurs in enzyme-catalysed reactions. “Since electron and hydrogen transfer is common to virtually all naturally occurring enzymes, the discovery has wide ranging implications for our understanding of how enzymes work.

Professor Scrutton stated: “These new ideas are breaking all the rules of classical models of enzyme catalysis. The discovery has wide ranging implications in the use of enzymes in industry and biomedical research, as the new theory is likely to underpin the mode of action of all enzymes. “For example, the new discovery questions current approaches used to rationally design enzyme inhibitors for the production of pharmaceuticals or novel enzyme catalysts for industrial applications.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>