Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory from University of Leicester scientists underpins drug development and food processing

05.10.2004


Scientists at the University of Leicester have shown that the textbook explanation of how enzymes work is wrong - at least for some enzymes.



Their discovery may explain why attempts to make artificial enzymes have often been disappointing. Industry must now re-think the rationale for the design of biological catalysts and its approaches to drug design. Enzymes are biological molecules that accelerate chemical reactions and are central to the existence of life. The new breakthrough that could revolutionise the application of enzymes in human well-being has been made at the University of Leicester.

Professors Nigel Scrutton and Michael Sutcliffe, of the Department of Biochemistry, have discovered a new phenomenon occurring at the atomic level that dictates how enzymes work. Their study of enzymes - which are vital for catalysis within industry - reveals that chemical reactions can proceed through energy barriers. This is contrary to received wisdom on how enzyme reactions work.


Professor Scrutton said: “Since the discovery of enzymes just over a century ago, we have witnessed an explosion in our understanding of enzyme catalysis, leading to a more detailed appreciation of how they work. However, despite the huge efforts to redesign enzyme molecules for specific applications (e.g. the synthesis of fine chemicals, food processing, bio sensing, brewing), progress in this area has been generally disappointing. This stems from our limited understanding of the subtleties by which enzymes enhance reaction rates. “Based on current dogma, the vast majority of studies have concentrated on understanding how enzymes facilitate passage of a reaction over an energy barrier. However, our studies have revealed that passage through, rather than over, the barrier can occur - a process that relies on quantum mechanical effects such as tunnelling.

Professor Sutcliffe added: “Quantum tunnelling is akin to traversing a landscape by tunnelling at the foot of a hill rather than walking over the summit. In the quantum world, small particles like the electron and hydrogen atom are able to ‘tunnel’ through energy barriers (or hills), and the Leicester team and demonstrated this occurs in enzyme-catalysed reactions. “Since electron and hydrogen transfer is common to virtually all naturally occurring enzymes, the discovery has wide ranging implications for our understanding of how enzymes work.

Professor Scrutton stated: “These new ideas are breaking all the rules of classical models of enzyme catalysis. The discovery has wide ranging implications in the use of enzymes in industry and biomedical research, as the new theory is likely to underpin the mode of action of all enzymes. “For example, the new discovery questions current approaches used to rationally design enzyme inhibitors for the production of pharmaceuticals or novel enzyme catalysts for industrial applications.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>