Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endangered frogs coexist with fungus once thought fatal

05.10.2004


Worldwide amphibian declines have reached crisis proportions. In many areas, habitat loss is the likely culprit but, in 1996, it was suggested that some unknown disease had spread through the populations. In 1998, the fungus Batrachochytrium dendrobatidis was identified from sick and dead frogs and, since then, several lines of laboratory based evidence have suggested that B. dendrobatidis is to blame for the dramatic frog declines. But with little information about how the disease impacts frogs in the wild, the causal role of this chytrid fungus remains unclear. In the open access journal PLoS Biology, Australian researchers Richard Retallick, Hamish McCallum and Rick Speare now "show unequivocally" that remaining populations of T. eungellensis, a rainforest frog listed as endangered, can persist in the wild with stable infections of this fungus.




To evaluate the effects of the fungus on frogs in their natural habitat, the authors focused on six species living in the high-elevation rainforest streams of Eungella National Park in Queensland, Australia, where frog losses were "particularly catastrophic". Two species vanished between 1985 and 1986: the Eungella Gastric-Brooding Frog (Rheobatrachus vitellinus), which is now thought extinct, and the Eungella Torrent Frog (Taudactylus eungellensis), which later reappeared in a few small populations. In the PLoS Biology study, Retallick et al. tested tissue samples taken from frogs between 1994 and 1998 - before the disease had been identified. The marked frogs were released back into the wild at the time the samples were collected. The authors found fungal infections in the samples of two species, including T. eungellensis. An analysis of tissue from recaptured frogs during the same period showed that the prevalence of infection did not vary from year to year, suggesting that the infection is now endemic. McCallum and colleagues also found no evidence that survival differed between infected and uninfected frogs, suggesting that this potentially devastating amphibian disease now coexists with the frogs, with little effect on their populations.

While these findings do not exonerate the fungus as the agent of mass declines, they can rule out the possibility that the fungus caused the decline, then vanished from the area, allowing frog populations to recover. Although it’s possible that B. dendrobatidis did not cause the initial T. eungellensis declines, surviving frog populations may have developed resistance to the pathogen, or less virulent strains of the fungus may have evolved. If it turns out that frog populations can develop resistance to the chytrid fungus, the researchers point out, then a conservation program of captive breeding and selecting for resistance could potentially thwart the extinction of these, and other, critically endangered frogs.

Paul Ocampo | EurekAlert!
Further information:
http://www.plos.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>