Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying the chemistry of drugs in wastewater

04.10.2004


What happens to painkillers, antibiotics and other medicines after their work is done, and they end up in the wastewater stream? The National Institute of Standards and Technology (NIST) is using laboratory experiments to help answer this question by studying what happens to pharmaceuticals when they react with chlorine--a disinfectant commonly used in wastewater treatment.



Scientists around the world often find drugs in water samples taken from streams and other waterways, but little is known about byproducts of those drugs created during chlorine treatment or time spent in the environment. The topic drew a large audience at the American Chemical Society annual meeting last month, where NIST chemist Mary Bedner was one of several presenters. Among the concerns is possible damage to the environment, animals or people from bioactive compounds.

NIST chemists selected four pharmaceuticals sometimes found in the environment, studied their reactions with chlorine over an hour (a timescale during which significant wastewater treatment occurs) and identified the resulting products using multiple techniques. Scientists found that the reactions are complicated and often produce several products, some unexpected. For instance, acetaminophen forms multiple products, two of which are highly toxic. All the drugs were transformed significantly, and their products were generally more "hydrophobic" than the parent pharmaceuticals. Hydrophobic compounds are more likely to build up in the body. It is not known whether these reaction products pose any health or environmental hazards.


"We have unique measurement capabilities here at NIST, which help to confirm the presence of products that are difficult to identify," says chemist William MacCrehan. Measurement techniques and data collected throughout the project should help other laboratories further investigate possible health or environmental effects.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>