Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoded gene sequence of the diatom Thalassiosira pseudonana

01.10.2004


For the very first time, the genetic make-up of a planktonic marine alga has been sequenced. During this process, a team of international scientists found unexpected metabolic pathways in the diatom Thalassiosira pseudonana. The results will be published in the scientific journal ‘Science’ this week.



The fact that Thalassiosira pseudonana operates a urea cycle, has been a special discovery. Up to now, this metabolic pathway for ammonia detoxification was known only from the liver cells of animals and humans. It remains unclear how the cycle works in the alga. In addition, the diatom has two separate means for digesting fat, which is also unusual. One digestive mechanism is carried out as in animals, within mitochondria, the cell’s ‘power stations’. In contrast, fatty acids are broken down in regular plant-like fashion inside peroxysomes used for detoxification. Hence, the boundary between animals and plants appears blurred in this species of diatom.

The genome sequencing of Thalassiosira pseudonana is also of great interest for evolutionary biologists. Scientists came across genes which originate from the nucleus of a red alga. Gene transfer of this kind supports the theory of secondary endosymbiosis. Eukaryotes, such as diatoms, are complex cells with membrane bound nucleus and cell organelles. All living organisms other than bacteria are comprised of eukaryotic cells. Almost all eukaryotic cells, including human ones, have mitochondria. Plant and algal cells also contain plastids for photosynthesis. Originally, both types of organelles were bacteria that were incorporated by eukaryotic cells. For this reason, they are often termed ‘primary endosymbionts’. In several cases, secondary endosymbiosis took place in that one eukaryotic cell was incorporated by another and subsequently reduced to a – now secondary – organelle. Diatoms appear to have engulfed a unicellular species of red alga and transformed it into a secondary plastid. “The diatom is some kind of a chimera of several organisms”, says Dr Klaus Valentin of the Alfred Wegener Institute for Polar and Marine Research. This explains the presence of red algal genes in T. pseudonana according to Klaus Valentin, who participated in this project, among other ways, through identification of genes.


Diatoms such as Thalassiosira are of great ecological importance, because they contribute an estimated 20 percent to global primary production. Their role within the global carbon cycle is therefore comparable to tropical rain forests. The unicellular algae occur across the whole globe in ocean and fresh water environments, and even inhabit layers of liquid on soils, rocks or trees. They form the basis of a highly efficient food web, and, for this reason, are also key to commercial fisheries. For instance, the red pigments from diatoms are responsible for the red colouration of salmon. Diatoms carry their name for the presence of a two-part internal casing which consists of silica and may be beautifully ornamented.

The genome sequencing project of Thalassiosira pseudonana was coordinated by the USA and financed by the US Department of Energy. German participation in the project includes, apart from Dr Klaus Valentin of the Alfred Wegener Institute, Dr Nils Kröger, who holds a professorship of biochemistry at the University of Regensburg.

The article ‘The Genome of the Diatom Thalassiosira pseudonana: Ecology, Evolution and Metabolism’ will be published in the journal ‘Science’ on October 1.

Ingrid Zondervan | alfa
Further information:
http://www.awi-bremerhaven.de

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>