Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy for specific form of leukemia

01.10.2004


Leukemia, or cancer of the bone marrow, strikes some 700 Belgians each year. Medical science has been at a total loss regarding the origin or cause of some forms of this disease − including T-cell acute lymphatic leukemia, or T-ALL. But now, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB), connected to the Catholic University of Leuven, have discovered the possible cause of the disease in 6% of the T-ALL patients. The scientists have found small circular DNA fragments in the cells of these patients that contain the ABL1 cancer gene. ABL1 also plays an important role in other forms of leukemia. The good news is that ABL1 is counteracted with the drug Glivec, and so this medication can now also provide help to a number of T-ALL patients.

T-ALL: T-cell acute lymphatic leukemia In normal circumstances, our white blood cells combat foreign intruders, like viruses and bacteria. However, in leukemia, there is a breakdown in the formation of white blood cells. The cells in the bone marrow that should develop into white blood cells multiply out of control without fully reaching maturity. These blood cells function inadequately, disrupting the production of normal blood cells. Among other effects, this makes patients more susceptible to infections. Leukemia appears in several forms − in the case of T-ALL, a large accumulation of immature white blood cells occurs within a very short time. This is the most common type of cancer in children under the age of 14 − striking children between two and three years of age, in particular. At present, an optimal treatment, with chemotherapy, cures over half of these children.

ABL1 plays a prominent role in several forms of leukemia



ABL1 is a kinase, a type of protein that catalyzes a number of processes in the cell − in the case of ABL1, this is the process of cell division. It is crucial that kinases function in a very controlled manner within our cells. Loss of control of their functioning disturbs the normal functioning and division of cells. Thus, such disorders in the functioning of ABL1 are a major cause of certain forms of leukemia. Existing drug now used with T-ALL patients Research performed by Jan Cools and his colleagues, under the direction of Peter Marynen, shows for the first time that ABL1 also lies at the root of T-ALL − which has a direct effect on the treatment of T-ALL patients. Indeed, a drug exists − called Glivec − that suppresses the action of ABL1. Glivec has already been successfully administered to patients with other forms of leukemia in which ABL1 plays a role. The new research results show that Glivec can also provide a better treatment for a small group of T-ALL patients. Jan Cools has already successfully conducted the first laboratory tests with Glivec on the cancer cells of these patients.

Ingenious research

The team of Jan Cools and Peter Marynen, along with Carlos Graux and colleagues from the Centre for Human Heredity under the direction of Anne Hagemeijer, noticed that the ABL1 gene was present in greater quantities in the white blood cells of 6% of the T-ALL patients. The genetic code of ABL1 is at chromosome 9. Through a flaw at the ABL1 gene, a piece of DNA is split off and ’takes on a life of its own’ as it were. This fragment contains the ABL1 gene, connected to another gene. Due to this fusion, ABL1 works non-stop − stimulating cell growth unremittingly. This process leads to an uncontrolled growth of immature white blood cells and thus to T-ALL. With these findings, the researchers have revealed a new mechanism for the formation of active cancer genes on circular DNA fragments. The researchers are now concentrating their efforts on discovering the role of ABL1 and other kinases in all T-ALL patients. In the future, they hope to be able to administer Glivec, and other kinase inhibitors, to treat these patients as well.

Relevant scientific publications

The research of the VIB scientists from Peter Marynen’s group appears on 1 October in the authoritative journal, Nature Genetics (Graux C, Cools J et al., Nature Genetics, 36(10):1084-1089 (2004)) and is online on the journal’s website: http://www.nature.com/naturegenetics.

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be
http://www.nature.com/naturegenetics

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>