Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy for specific form of leukemia

01.10.2004


Leukemia, or cancer of the bone marrow, strikes some 700 Belgians each year. Medical science has been at a total loss regarding the origin or cause of some forms of this disease − including T-cell acute lymphatic leukemia, or T-ALL. But now, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB), connected to the Catholic University of Leuven, have discovered the possible cause of the disease in 6% of the T-ALL patients. The scientists have found small circular DNA fragments in the cells of these patients that contain the ABL1 cancer gene. ABL1 also plays an important role in other forms of leukemia. The good news is that ABL1 is counteracted with the drug Glivec, and so this medication can now also provide help to a number of T-ALL patients.

T-ALL: T-cell acute lymphatic leukemia In normal circumstances, our white blood cells combat foreign intruders, like viruses and bacteria. However, in leukemia, there is a breakdown in the formation of white blood cells. The cells in the bone marrow that should develop into white blood cells multiply out of control without fully reaching maturity. These blood cells function inadequately, disrupting the production of normal blood cells. Among other effects, this makes patients more susceptible to infections. Leukemia appears in several forms − in the case of T-ALL, a large accumulation of immature white blood cells occurs within a very short time. This is the most common type of cancer in children under the age of 14 − striking children between two and three years of age, in particular. At present, an optimal treatment, with chemotherapy, cures over half of these children.

ABL1 plays a prominent role in several forms of leukemia



ABL1 is a kinase, a type of protein that catalyzes a number of processes in the cell − in the case of ABL1, this is the process of cell division. It is crucial that kinases function in a very controlled manner within our cells. Loss of control of their functioning disturbs the normal functioning and division of cells. Thus, such disorders in the functioning of ABL1 are a major cause of certain forms of leukemia. Existing drug now used with T-ALL patients Research performed by Jan Cools and his colleagues, under the direction of Peter Marynen, shows for the first time that ABL1 also lies at the root of T-ALL − which has a direct effect on the treatment of T-ALL patients. Indeed, a drug exists − called Glivec − that suppresses the action of ABL1. Glivec has already been successfully administered to patients with other forms of leukemia in which ABL1 plays a role. The new research results show that Glivec can also provide a better treatment for a small group of T-ALL patients. Jan Cools has already successfully conducted the first laboratory tests with Glivec on the cancer cells of these patients.

Ingenious research

The team of Jan Cools and Peter Marynen, along with Carlos Graux and colleagues from the Centre for Human Heredity under the direction of Anne Hagemeijer, noticed that the ABL1 gene was present in greater quantities in the white blood cells of 6% of the T-ALL patients. The genetic code of ABL1 is at chromosome 9. Through a flaw at the ABL1 gene, a piece of DNA is split off and ’takes on a life of its own’ as it were. This fragment contains the ABL1 gene, connected to another gene. Due to this fusion, ABL1 works non-stop − stimulating cell growth unremittingly. This process leads to an uncontrolled growth of immature white blood cells and thus to T-ALL. With these findings, the researchers have revealed a new mechanism for the formation of active cancer genes on circular DNA fragments. The researchers are now concentrating their efforts on discovering the role of ABL1 and other kinases in all T-ALL patients. In the future, they hope to be able to administer Glivec, and other kinase inhibitors, to treat these patients as well.

Relevant scientific publications

The research of the VIB scientists from Peter Marynen’s group appears on 1 October in the authoritative journal, Nature Genetics (Graux C, Cools J et al., Nature Genetics, 36(10):1084-1089 (2004)) and is online on the journal’s website: http://www.nature.com/naturegenetics.

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be
http://www.nature.com/naturegenetics

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>