Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy for specific form of leukemia

01.10.2004


Leukemia, or cancer of the bone marrow, strikes some 700 Belgians each year. Medical science has been at a total loss regarding the origin or cause of some forms of this disease − including T-cell acute lymphatic leukemia, or T-ALL. But now, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB), connected to the Catholic University of Leuven, have discovered the possible cause of the disease in 6% of the T-ALL patients. The scientists have found small circular DNA fragments in the cells of these patients that contain the ABL1 cancer gene. ABL1 also plays an important role in other forms of leukemia. The good news is that ABL1 is counteracted with the drug Glivec, and so this medication can now also provide help to a number of T-ALL patients.

T-ALL: T-cell acute lymphatic leukemia In normal circumstances, our white blood cells combat foreign intruders, like viruses and bacteria. However, in leukemia, there is a breakdown in the formation of white blood cells. The cells in the bone marrow that should develop into white blood cells multiply out of control without fully reaching maturity. These blood cells function inadequately, disrupting the production of normal blood cells. Among other effects, this makes patients more susceptible to infections. Leukemia appears in several forms − in the case of T-ALL, a large accumulation of immature white blood cells occurs within a very short time. This is the most common type of cancer in children under the age of 14 − striking children between two and three years of age, in particular. At present, an optimal treatment, with chemotherapy, cures over half of these children.

ABL1 plays a prominent role in several forms of leukemia



ABL1 is a kinase, a type of protein that catalyzes a number of processes in the cell − in the case of ABL1, this is the process of cell division. It is crucial that kinases function in a very controlled manner within our cells. Loss of control of their functioning disturbs the normal functioning and division of cells. Thus, such disorders in the functioning of ABL1 are a major cause of certain forms of leukemia. Existing drug now used with T-ALL patients Research performed by Jan Cools and his colleagues, under the direction of Peter Marynen, shows for the first time that ABL1 also lies at the root of T-ALL − which has a direct effect on the treatment of T-ALL patients. Indeed, a drug exists − called Glivec − that suppresses the action of ABL1. Glivec has already been successfully administered to patients with other forms of leukemia in which ABL1 plays a role. The new research results show that Glivec can also provide a better treatment for a small group of T-ALL patients. Jan Cools has already successfully conducted the first laboratory tests with Glivec on the cancer cells of these patients.

Ingenious research

The team of Jan Cools and Peter Marynen, along with Carlos Graux and colleagues from the Centre for Human Heredity under the direction of Anne Hagemeijer, noticed that the ABL1 gene was present in greater quantities in the white blood cells of 6% of the T-ALL patients. The genetic code of ABL1 is at chromosome 9. Through a flaw at the ABL1 gene, a piece of DNA is split off and ’takes on a life of its own’ as it were. This fragment contains the ABL1 gene, connected to another gene. Due to this fusion, ABL1 works non-stop − stimulating cell growth unremittingly. This process leads to an uncontrolled growth of immature white blood cells and thus to T-ALL. With these findings, the researchers have revealed a new mechanism for the formation of active cancer genes on circular DNA fragments. The researchers are now concentrating their efforts on discovering the role of ABL1 and other kinases in all T-ALL patients. In the future, they hope to be able to administer Glivec, and other kinase inhibitors, to treat these patients as well.

Relevant scientific publications

The research of the VIB scientists from Peter Marynen’s group appears on 1 October in the authoritative journal, Nature Genetics (Graux C, Cools J et al., Nature Genetics, 36(10):1084-1089 (2004)) and is online on the journal’s website: http://www.nature.com/naturegenetics.

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be
http://www.nature.com/naturegenetics

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>