Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequence controls expression of gene involved in cancer

01.10.2004


Scientists have discovered a DNA sequence that causes the destabilization, and hence decay, of the protooncogene bcl-2 (B-cell lymphoma/leukemia-2). Because the overexpression of bcl-2 is associated with cancer, this discovery may lead to new therapeutic strategies for treating the disease.



The research appears as the "Paper of the Week" in the October 8 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Bcl-2 is a gene that, when mutated or inappropriately expressed, can cause a cell to become cancerous. Normally, bcl-2 produces a protein that inhibits cell death or apoptosis. This protein keeps death-promoting factors from producing holes in the mitochondria which can result in calcium and destructive proteins leaking out into the cell. However, the overexpression of bcl-2 in damaged cells can lead to the continued division of the mutated cells and eventually cancer.


The expression of the bcl-2 gene is regulated both transcriptionally and posttranscriptionally. One way bcl-2 levels are controlled is through an adenine and uracil-rich sequence of nucleotides in the 3’ untranslated region of the bcl-2 mRNA. This sequence, called the AU-rich element, or ARE, recruits a number of proteins that destabilize the bcl-2 mRNA, resulting in its degradation.

A report that a region of RNA upstream of the ARE also affects mRNA stability motivated Dr. Jeong-Hwa Lee and his colleagues at the Catholic University of Korea to make a series of bcl-2 mRNA constructs with deletions around the ARE.

From these constructs, the investigators identified a region of 30 nucleotides outside the ARE that destabilizes bcl-2 mRNA both in the absence and in the presence of the ARE. Because the region is composed mostly of cytosine and adenine repeats, they named it the CA-repeated Region (CAR).

The discovery of a new region on the bcl-2 gene that controls its expression may be big news for cancer therapy. Several drugs that reduce the amount of bcl-2 present in the cell are already used in chemotherapy to induce apoptosis and overcome drug resistance in cancer cells.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>