Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Belgian researchers explore revolutionary approach to angiogenesis

30.09.2004


A revolutionary approach to angiogenesis[1] by a team of Belgian researchers could make cancer treatment more effective at killing tumours.



Dr. Olivier Feron and his team from the University of Louvain Medical School in Brussels have turned the whole concept of targeting tumour blood vessels on its head. Instead of the conventional approach of trying to starve tumour cells of the blood supply they need to grow, they are doing the opposite – opening up the tumour blood supply to allow better access for cancer drugs and more effective radiotherapy.

The potential for exploiting tumour blood vessels has been made possible by their discovery in a study in mice that the arterioles (blood vessels less than 0.5mm in diameter) that feed tumours have the ability to contract in response to increases in pressure within their lumen (the space within the blood vessels). Equivalent sized blood vessels in healthy tissue can’t do this.


"What this means is that we may have the potential to use drugs to selectively exploit these blood vessels against the tumour instead of, or before, killing them. Exploiting tumour blood vessels instead of destroying them by anti-angiogenic drugs constitutes a paradigm shift in approach to angiogenesis," Dr. Feron told a news briefing today (Thursday 30 September) at the EORTC-NCI-AACR[2] Symposium on Molecular Targets and Cancer Therapeutics.

The key to the ability of tumour arterioles to contract lies with endothelin-1 (ET-1) a peptide released in large amounts by many tumour cells, which stimulates their proliferation. "The effect of ET-1 in tumours has been underestimated up to now," Dr. Feron said. "ET-1 has been known for years in cardiology as a very potent blood vessel constrictor. Here, we found that the myogenic tone (mechanical force) with which the tumour blood vessels contract and expand is exquisitely dependent on the endothelin pathway.

"What we did was to use a an endolthelin antagonist – in this case a cyclic peptide called BQ123 – to target selectively one of the ET receptors, ET-A, that we found was particularly dense in the tumour arterioles. This peptide completely wiped out the ability of the arterioles to contract and kept them wide open. We were able to demonstrate, using laser doppler probes and imaging that this increased blood flow to the tumour but that healthy tissue was not affected. We were then also able demonstrate that administering BQ123 could significantly increase the delivery of the anti-cancer drug cyclophosphamide to the tumour. Furthermore, tumour response to fractionated radiotherapy was also improved significantly because the increased blood flow carried more oxygen to the tumour."

Dr. Feron, who is an assistant professor and research associate in the Department of Internal Medicine at the University of Louvain, said that the team was now planning to start Phase I clinical trials in patients. "The chances for this anti-tumour adjuvant therapy to be well tolerated are high as ET-1 antagonists would be used acutely to produce an immediate effect on the tumour blood vessels – i.e. given at the same time that the chemotherapy or radiotherapy is administered."

He said that although the research was in mice and that it was early days as the concept still had to be proved in patients, the principle of keeping tumour arterioles open to boost responses to treatment should work in the many tumour types where ET-1 was expressed.

[1] Angiogenesis: the process by which blood vessels are formed. The formation of blood vessels is an essential part of tumour development

[2] EORTC [European Organisation for Research and Treatment of Cancer];
NCI [National Cancer Institute]; AACR [American Association for Cancer Research]

Margaret Willson | alfa
Further information:
http://www.mwcommunications.org.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>