Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Belgian researchers explore revolutionary approach to angiogenesis

30.09.2004


A revolutionary approach to angiogenesis[1] by a team of Belgian researchers could make cancer treatment more effective at killing tumours.



Dr. Olivier Feron and his team from the University of Louvain Medical School in Brussels have turned the whole concept of targeting tumour blood vessels on its head. Instead of the conventional approach of trying to starve tumour cells of the blood supply they need to grow, they are doing the opposite – opening up the tumour blood supply to allow better access for cancer drugs and more effective radiotherapy.

The potential for exploiting tumour blood vessels has been made possible by their discovery in a study in mice that the arterioles (blood vessels less than 0.5mm in diameter) that feed tumours have the ability to contract in response to increases in pressure within their lumen (the space within the blood vessels). Equivalent sized blood vessels in healthy tissue can’t do this.


"What this means is that we may have the potential to use drugs to selectively exploit these blood vessels against the tumour instead of, or before, killing them. Exploiting tumour blood vessels instead of destroying them by anti-angiogenic drugs constitutes a paradigm shift in approach to angiogenesis," Dr. Feron told a news briefing today (Thursday 30 September) at the EORTC-NCI-AACR[2] Symposium on Molecular Targets and Cancer Therapeutics.

The key to the ability of tumour arterioles to contract lies with endothelin-1 (ET-1) a peptide released in large amounts by many tumour cells, which stimulates their proliferation. "The effect of ET-1 in tumours has been underestimated up to now," Dr. Feron said. "ET-1 has been known for years in cardiology as a very potent blood vessel constrictor. Here, we found that the myogenic tone (mechanical force) with which the tumour blood vessels contract and expand is exquisitely dependent on the endothelin pathway.

"What we did was to use a an endolthelin antagonist – in this case a cyclic peptide called BQ123 – to target selectively one of the ET receptors, ET-A, that we found was particularly dense in the tumour arterioles. This peptide completely wiped out the ability of the arterioles to contract and kept them wide open. We were able to demonstrate, using laser doppler probes and imaging that this increased blood flow to the tumour but that healthy tissue was not affected. We were then also able demonstrate that administering BQ123 could significantly increase the delivery of the anti-cancer drug cyclophosphamide to the tumour. Furthermore, tumour response to fractionated radiotherapy was also improved significantly because the increased blood flow carried more oxygen to the tumour."

Dr. Feron, who is an assistant professor and research associate in the Department of Internal Medicine at the University of Louvain, said that the team was now planning to start Phase I clinical trials in patients. "The chances for this anti-tumour adjuvant therapy to be well tolerated are high as ET-1 antagonists would be used acutely to produce an immediate effect on the tumour blood vessels – i.e. given at the same time that the chemotherapy or radiotherapy is administered."

He said that although the research was in mice and that it was early days as the concept still had to be proved in patients, the principle of keeping tumour arterioles open to boost responses to treatment should work in the many tumour types where ET-1 was expressed.

[1] Angiogenesis: the process by which blood vessels are formed. The formation of blood vessels is an essential part of tumour development

[2] EORTC [European Organisation for Research and Treatment of Cancer];
NCI [National Cancer Institute]; AACR [American Association for Cancer Research]

Margaret Willson | alfa
Further information:
http://www.mwcommunications.org.uk

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>