Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Belgian researchers explore revolutionary approach to angiogenesis

30.09.2004


A revolutionary approach to angiogenesis[1] by a team of Belgian researchers could make cancer treatment more effective at killing tumours.



Dr. Olivier Feron and his team from the University of Louvain Medical School in Brussels have turned the whole concept of targeting tumour blood vessels on its head. Instead of the conventional approach of trying to starve tumour cells of the blood supply they need to grow, they are doing the opposite – opening up the tumour blood supply to allow better access for cancer drugs and more effective radiotherapy.

The potential for exploiting tumour blood vessels has been made possible by their discovery in a study in mice that the arterioles (blood vessels less than 0.5mm in diameter) that feed tumours have the ability to contract in response to increases in pressure within their lumen (the space within the blood vessels). Equivalent sized blood vessels in healthy tissue can’t do this.


"What this means is that we may have the potential to use drugs to selectively exploit these blood vessels against the tumour instead of, or before, killing them. Exploiting tumour blood vessels instead of destroying them by anti-angiogenic drugs constitutes a paradigm shift in approach to angiogenesis," Dr. Feron told a news briefing today (Thursday 30 September) at the EORTC-NCI-AACR[2] Symposium on Molecular Targets and Cancer Therapeutics.

The key to the ability of tumour arterioles to contract lies with endothelin-1 (ET-1) a peptide released in large amounts by many tumour cells, which stimulates their proliferation. "The effect of ET-1 in tumours has been underestimated up to now," Dr. Feron said. "ET-1 has been known for years in cardiology as a very potent blood vessel constrictor. Here, we found that the myogenic tone (mechanical force) with which the tumour blood vessels contract and expand is exquisitely dependent on the endothelin pathway.

"What we did was to use a an endolthelin antagonist – in this case a cyclic peptide called BQ123 – to target selectively one of the ET receptors, ET-A, that we found was particularly dense in the tumour arterioles. This peptide completely wiped out the ability of the arterioles to contract and kept them wide open. We were able to demonstrate, using laser doppler probes and imaging that this increased blood flow to the tumour but that healthy tissue was not affected. We were then also able demonstrate that administering BQ123 could significantly increase the delivery of the anti-cancer drug cyclophosphamide to the tumour. Furthermore, tumour response to fractionated radiotherapy was also improved significantly because the increased blood flow carried more oxygen to the tumour."

Dr. Feron, who is an assistant professor and research associate in the Department of Internal Medicine at the University of Louvain, said that the team was now planning to start Phase I clinical trials in patients. "The chances for this anti-tumour adjuvant therapy to be well tolerated are high as ET-1 antagonists would be used acutely to produce an immediate effect on the tumour blood vessels – i.e. given at the same time that the chemotherapy or radiotherapy is administered."

He said that although the research was in mice and that it was early days as the concept still had to be proved in patients, the principle of keeping tumour arterioles open to boost responses to treatment should work in the many tumour types where ET-1 was expressed.

[1] Angiogenesis: the process by which blood vessels are formed. The formation of blood vessels is an essential part of tumour development

[2] EORTC [European Organisation for Research and Treatment of Cancer];
NCI [National Cancer Institute]; AACR [American Association for Cancer Research]

Margaret Willson | alfa
Further information:
http://www.mwcommunications.org.uk

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>