Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows plants can shuffle and paste gene pieces to generate genetic diversity

30.09.2004


A team of researchers at the University of Georgia has discovered a new way that genetic entities called transposable elements (TEs) can promote evolutionary change in plants.



The research, published Sept. 30 in the journal Nature, was led by Dr. Susan Wessler, a Distinguished Research Professor of plant biology at UGA. The Wessler lab studies TEs, which are pieces of DNA that make copies of themselves that can then be inserted throughout the genome. The process can be highly efficient. Almost half of the human genome is derived from TEs and, this value can go to an astounding 95 percent or even higher for some plants, such as the lily. "Normally transposable elements just copy themselves, said Wessler, "But there were a few anecdotal reports of plant TEs that contained fragments of plant genes that the TE had apparently captured while it was copying itself. The fact that these instances were so rare suggested that this was not an important process."

In analyzing the TE content of the entire rice genome, Ning Jiang and Xiaoyu Zhang, two postdoctoral fellows in the Wessler lab along with Zhirong Bao, a graduate student in the lab of Dr. Sean Eddy of Washington University in St. Louis, discovered that capturing rice gene fragments is a way of life for one type of TE called MULEs.


MULEs with captured gene fragments were called Pack-MULEs. The study identified more than 3000 Pack-MULEs that contained over a thousand different rice gene fragments. Many of the Pack-MULEs have two or three gene fragments picked up from different genes but now fused together into a new gene combination. "There are only a few mechanisms known for evolving new genes, and one is genetic recombination, which can bring fragments of different genes next to each other," said Wessler. "A second is the duplication of an existing genes followed by mutation of one of the pair until it evolves into another function, though this is not the usual fate because the duplicate copy usually mutate into oblivion."

The discovery of thousands of Pack-MULEs in the rice genome indicates that this may be an important mechanism to create new genes and new functions in rice and in other plants where MULEs are known to flourish. Recent studies indicate that species evolve through the generation of new genes and/or gene variants that help a population adapt to a changing environment, for example, or to inhabit a different niche.

Why are transposable elements so successful? Some think that they are simply "junk" that, much like viruses, they can make lots of copies but do little to help the host. There is mounting evidence, however, that TEs help organisms evolve by making it easier to generate the sort of genetic novelty that is necessary for them to cope with a changing world. Thus, instead of being beasts of burden, Pack-MULEs may serve rice as a tool of evolutionary change.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>