Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows plants can shuffle and paste gene pieces to generate genetic diversity

30.09.2004


A team of researchers at the University of Georgia has discovered a new way that genetic entities called transposable elements (TEs) can promote evolutionary change in plants.



The research, published Sept. 30 in the journal Nature, was led by Dr. Susan Wessler, a Distinguished Research Professor of plant biology at UGA. The Wessler lab studies TEs, which are pieces of DNA that make copies of themselves that can then be inserted throughout the genome. The process can be highly efficient. Almost half of the human genome is derived from TEs and, this value can go to an astounding 95 percent or even higher for some plants, such as the lily. "Normally transposable elements just copy themselves, said Wessler, "But there were a few anecdotal reports of plant TEs that contained fragments of plant genes that the TE had apparently captured while it was copying itself. The fact that these instances were so rare suggested that this was not an important process."

In analyzing the TE content of the entire rice genome, Ning Jiang and Xiaoyu Zhang, two postdoctoral fellows in the Wessler lab along with Zhirong Bao, a graduate student in the lab of Dr. Sean Eddy of Washington University in St. Louis, discovered that capturing rice gene fragments is a way of life for one type of TE called MULEs.


MULEs with captured gene fragments were called Pack-MULEs. The study identified more than 3000 Pack-MULEs that contained over a thousand different rice gene fragments. Many of the Pack-MULEs have two or three gene fragments picked up from different genes but now fused together into a new gene combination. "There are only a few mechanisms known for evolving new genes, and one is genetic recombination, which can bring fragments of different genes next to each other," said Wessler. "A second is the duplication of an existing genes followed by mutation of one of the pair until it evolves into another function, though this is not the usual fate because the duplicate copy usually mutate into oblivion."

The discovery of thousands of Pack-MULEs in the rice genome indicates that this may be an important mechanism to create new genes and new functions in rice and in other plants where MULEs are known to flourish. Recent studies indicate that species evolve through the generation of new genes and/or gene variants that help a population adapt to a changing environment, for example, or to inhabit a different niche.

Why are transposable elements so successful? Some think that they are simply "junk" that, much like viruses, they can make lots of copies but do little to help the host. There is mounting evidence, however, that TEs help organisms evolve by making it easier to generate the sort of genetic novelty that is necessary for them to cope with a changing world. Thus, instead of being beasts of burden, Pack-MULEs may serve rice as a tool of evolutionary change.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>