Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA lends scientists a hand, revealing new chemical reactions


Technique could ease discovery of countless reactions by linking organic fragments to DNA strands

Scientists have developed a powerful way of mining the chemical universe for new reactions by piggybacking collections of different small organic molecules onto short strands of DNA, which then gives the reactants the opportunity to react by zipping together. Their work draws upon an innovative technique, known as "DNA-templated synthesis," that uses DNA to code not for RNA or proteins but instead for synthetic molecules.

The researchers, led by Harvard University chemist David R. Liu, report this week in the journal Nature that their system for reaction discovery, driven by DNA-templated synthesis, is so efficient that a single researcher can evaluate thousands of potential chemical reactions in a two-day experiment. "A conventional approach to reaction discovery, in which different reaction conditions are examined for their ability to transform one type of substrates into one type of product, may well be the best approach for trying to achieve a specific transformation," says Liu, an associate professor of chemistry and chemical biology in Harvard’s Faculty of Arts and Sciences. "But no one knows what fraction of ’reactivity space’ has been mined thus far, or even what this space looks like. We were therefore intrigued by a different approach to reaction discovery that does not focus on any specific combination of substrates but instead can simultaneously examine many combinations."

DNA-templated synthesis, pioneered in Liu’s group, taps the unique assembly power of nucleic acids to address fundamental challenges in chemistry. Organic molecules are attached to, and "encoded" by, single strands of approximately a dozen DNA bases; when two strands with complementary sequences spontaneously stick together, their associated organic molecules can undergo a chemical reaction to generate a product.

Because the resulting synthetic compounds are linked to DNA, techniques long used to screen and amplify the genetic mainstay can be applied. In the current work, the scientists coupled DNA-templated synthesis with in vitro selection and DNA microarray analysis to scan for pairs of reactants that are able to undergo chemical reaction under a chosen set of reaction conditions.

Liu’s team first applied DNA-templated synthesis to the creation of new synthetic molecules; now, shifting their focus a bit, they’re using the technique to reveal as-yet undiscovered chemical reactions. DNA’s inherent sequence selectivity –- binding only to other strands with a complementary sequence -– means that DNA-templated synthesis can be used to evaluate hundreds of potential chemical reactions simultaneously, in a single solution.

"We had assumed that DNA-templated synthesis might make possible rapid discovery of potentially useful reactions and were encouraged to find, early on, an unexpected reaction that efficiently coupled two simple hydrocarbons, a terminal alkyne and a terminal alkene, to form a useful and more complex group called a trans-enone," Liu says. "We’ve also been excited by the fact that this reaction not only works in the DNA-templated format in which it was discovered, but also in a conventional flask-based chemistry format."

Chemical synthesis occurs very differently in laboratories and in cells. Chemists typically work with molecules that react to form products when they randomly collide at high concentrations. By contrast, biomolecules are found within cells at concentrations that are often a million times lower than the concentrations of molecules in laboratory reactors. In nature, the reactions between these highly dilute molecules are directed by enzymes that selectively bring certain biological reactants together. Liu and his colleagues use DNA as a similar type of intermediary to bring together synthetic small molecules that are otherwise too dilute to react, allowing minute quantities of sparse molecules to behave as denser mixtures when assembled together by DNA base pairing.

Liu’s co-authors are Matthew W. Kanan, Mary M. Rozenman, Kaori Sakurai, and Thomas M. Snyder, all of Harvard’s Department of Chemistry and Chemical Biology. The work was supported by the National Institutes of Health, the Office of Naval Research, and the Arnold and Mabel Beckman Foundation.

Steve Bradt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>