Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene clusters predict atherosclerosis severity, susceptibility

29.09.2004


Duke University Medical Center researchers have identified specific clusters of genes within human aortas that appear to predict with great specificity which patients may be at highest risk for developing atherosclerosis, as well as the severity of the disease.



For the researchers, this is an important first of many steps toward developing highly individualized approaches to identifying and treating atherosclerosis that are tailored to and informed by a patient’s unique genetic make-up.

Atherosclerosis is a disorder marked by the thickening and clogging of blood vessels, which over time can deprive the heart of necessary oxygen and nutrients. While factors such as diet, smoking, cholesterol levels and inactivity are important in the development of atherosclerosis, the researchers said that heredity plays a crucial role in how the body responds to these environmental factors. "Instead of trying to find a specific gene that might be implicated in the development atherosclerosis, we took the novel approach of trying identify clusters of genes that may help us better understand the progression of the disease," said Duke cardiologist David Seo, M.D. The results of the Duke research are scheduled to appear in the October 2004 issue of the journal Arteriorsclerosis, Thrombosis and Vascular Biology and are published early on-line at http://atvb.ahajournals.org. "In a complex disorder like atherosclerosis, it is not likely that only one gene is involved, but many different ones that interact with each other," said Seo.


Specifically, the researchers found that their new model could predict with 93.5 percent accuracy the extent of atherosclerosis. It could also predict with 93.6 percent accuracy the location of atherosclerotic lesions. "This study is the foundation of future research and was absolutely critical study in demonstrating that we can indeed refine genomic techniques to address the risk for complex disorders like atherosclerosis," said cardiologist Pascal Goldschmidt, M.D., senior member of the research team and chairman of Duke’s Department of Medicine. "After seeing the results of this study, I am extremely encouraged that at some point after further research we will be able to help fulfill the promise of personalized medicine," Goldschmidt. "This would not have been possible without the collaborations across this institution, as well as the support of the National Institutes of Health."

For their experiments, the research collected more than 60 fresh aorta samples from humans whose hearts had been harvested for organ transplantation. The aorta, the body’s largest artery, takes blood ejected from the heart and distributes it throughout the body via smaller arteries. The samples ranged from healthy to severely diseased. The researchers then "mapped" not only the degree of atherosclerotic plaque development, but also the locations of the plaque within the aorta. Location of the plaque is an important indicator of disease susceptibility, the researchers said, because atherosclerosis tends to progress toward the heart.

Once the samples were mapped by defined segments, the researches then performed a DNA microarray, or gene chip, analysis of each region. Using this new technique, researchers can quickly screen more than 12,500 known genes, searching for those that are "turned on," or are expressing themselves. In terms of severity of disease, the researchers found a cluster of 208 genes that predicted severe disease in 29 out of 31 (93.5 percent) tissues samples, and a cluster of 28 genes that predicted location of disease in 59 out of 63 samples (93.6 percent).

In general, many of the genes found within the clusters were known to researchers, although there was very little overlap between genes identified in the severity and locations groups. The genes in the severity cluster tended to be involved in the inflammation process, while those related to susceptibility tend to mediate cellular responses that occur prior to the inflammatory process. "While the methods we used to identify these genes do not have immediate clinical applications, they do play an important role in identifying genes for further study," Seo said. "The identification of these genes advances our understanding of the biological pathways relevant to atherosclerosis. "Many of these genes are likely to be implicated in the disease process and may become targets of future therapies," Seo continued. "By identifying variants within these genes, we may be able to identify combinations of such variants that when taken together with known clinical risk factors, may lead to new prognostic and diagnostic tools for cardiovascular disease."

The research team plans further studies in animal mouse models of atherosclerosis to further refine their techniques. Since it is not practical to test samples of aortas in living patients, the also researchers hope to develop a way to correlate their findings in the aorta with possible markers in circulating blood.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>