Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana use could cause tubal pregnancies

28.09.2004


Cannabinoid receptor necessary, but can’t be overloaded, mouse model shows



Marijuana use may increase the risk of ectopic (tubal) pregnancies, researchers at Vanderbilt University Medical Center reported this week. The researchers studied CB1, a "cannabinoid" receptor that binds the main active chemical for marijuana, delta-9-tetrahydrocannabinol (THC).

In pregnant mice that lacked the gene for the receptor, or in which the receptor was blocked, the embryo failed to go through the oviduct – the tube leading from the ovaries to the uterus. The same thing happened in normal mice when the receptor was over-stimulated. The study, published in the current issue of the journal Nature Medicine, describes for the first time how the CB1 receptor in the mouse regulates muscle contraction to move the embryo down the oviduct.


It is not known whether drugs that block or, in the case of marijuana, over-stimulate the CB1 receptor can cause ectopic pregnancy in humans. However, "our results raise caution for women of reproductive ages regarding the chronic use of marijuana for recreation or pain alleviation," the researchers concluded.

The report’s senior author, Sudhansu K. Dey, Ph.D., said he also was concerned about the potential impact of an anti-obesity drug, now in clinical trials, that suppresses appetite by blocking the CB1 receptor. Such a drug, if approved, would likely be taken by young women of reproductive age. "What will happen if they consume anti-CB1 drugs?" asked Dey, Dorothy Overall Wells Professor of Pediatrics and professor of Cell & Developmental Biology and Pharmacology at Vanderbilt University Medical Center.

According to the U.S. Centers for Disease Control and Prevention, about 100,000 ectopic pregnancies occur in the United States each year (out of more than 6 million total pregnancies) and account for about 9 percent of all pregnancy-related deaths in the country. Risk factors include pelvic inflammatory disease, which can scar the fallopian tubes, and smoking.

At the same time, surveys indicate that a significant percentage of young women regularly smoke marijuana. According to the 2002 National Survey on Drug Use and Health, 13.6 percent of women aged 18 to 25 said they had used the drug within the past month. The federal survey interviews approximately 67,500 people each year. Marijuana exerts its effects in the brain and peripheral organs through two cannabinoid receptors, CB1 and CB2. Lipid molecules made by the body, called "endocannabinoids," activate these receptors, and are involved in several important physiological functions, including memory, pain and appetite.

In the 1990s, while at the University of Kansas Medical Center in Kansas City, Dey and his colleagues found that the mouse pre-implantation embryo, or blastocyst, had much higher levels of the CB1 receptor than did the brain. They also found that the uterus produced one of the activating molecules, called anandamide.

After moving to Vanderbilt two years ago, the researchers found that anandamide regulates implantation of the mouse embryo in the wall of the uterus. At low concentrations, it synchronizes embryo development with uterine receptivity so that successful implantation occurs. At higher levels, however, implantation is blocked. Elevated levels of anandamide also have been shown to cause spontaneous pregnancy loss in women. "I feel that it has a fundamental physiological function in reproduction," said Dey, who directs the division of Reproductive and Developmental Biology at Vanderbilt.

The current study began with the observation that mice commonly used in genetic experiments often fail to deliver pups, even though they become pregnant. Upon flushing the oviducts, the researchers found the embryos, which for some reason were unable to reach the uterus. This strain of mouse lacks the gene for the CB1 receptor. When the researchers gave a drug that blocked CB1 in normal mice, they observed the same phenomenon – in most of the mice the embryos failed to reach the uterus. The same thing happened when the mice were given an amandamide-like drug to over-stimulate the receptor.

In a search to unravel this mystery, Haibin Wang, Ph.D., research assistant professor of Pediatrics, found that the CB1 receptor is located near two other receptors (adrenergic receptors) that – through the action of noradrenaline, a neurotransmitter – regulate muscle contraction. Wang, who led the study, has received two Lalor Foundation fellowships supporting research in reproductive biology.

Subsequent experiments supported a new concept: the CB1 receptor modulates the release of noradrenaline, which in turn stimulates waves of muscle contraction and relaxation in the oviduct, nudging the embryo toward the uterus. Too much or too little of this "endocannabinoid tone" can result in pregnancy failure. In support of this hypothesis, abnormal muscular contraction that prevents human embryos from reaching the uterus is one known cause of ectopic pregnancy, Dey said.

Polymorphisms (different forms) of the CB1 gene have been associated with drug dependency in humans. Dey and his colleagues plan to study whether certain polymorphisms also may reflect an increased risk for ectopic pregnancy. "That will be the ultimate test" for proving the receptor’s role in ectopic pregnancy in humans, he says.

Clinton Colmenares | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>