Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switch found that allows cancer cells to become mobile

28.09.2004


Researchers at The University of Texas M. D. Anderson Cancer Center have figured out a key molecular step by which a cancer cell can unhook itself from the mesh weave of other cancer cells in a tumor, and move away to a different part of the body - the process, known as metastasis, that makes cancer so dangerous.



Describing what they call a critical "molecular switch" - detailed in the advance online edition of the journal Nature Cell Biology - the researchers say the door is now open to designing new ways to block that metastasis. "It always has been a mystery as to what allows a cancer cell to become mobile and move away from a tumor, but now we have found a very interesting mechanism that explains it," says the study’s lead author, Mien-Chie Hung, Ph.D., a professor and chair of the Department of Molecular and Cellular Oncology. That switch, in the form of an enzyme known as GSK-3ß, which is known to alter the function of proteins, may "offer us an anticancer strategy to pursue," Hung says.

Most cancers are of the "solid tumor" variety, and are made up of epithelial cells - those which make up the membranous tissue covering organs and other internal surfaces of the body. Although epithelial cells are firmly fixed to each other in a network that makes up tissue, researchers know from the study of developmental biology that embryonic epithelial cells have the ability to move. To do that, epithelial cells take on the characteristics of what are known as "mesenchymal" cells, those that develop into connective tissue and blood vessel cells, among other tissue types. They are capable of forming collagen fibers that allows them to "creep along" to where they are needed during development.


This process, known as "epithelial-mesenchymal transition (EMT)," has recently been observed in cancer progression, Hung says. "It was discovered that the increased motility and invasiveness of cancer cells resembles the EMT that occurs during embryonic development," he says. "And since about 90 percent of cancer deaths result from local invasion and distant metastasis of tumor cells, an insight into how this process works in cancer has been urgently needed."

Some of this transition process in cancer cells already has been described, Hung says. What has been known is that epithelial cells have a lot of protein known as E-cadherin, which act like anchors, fixing the cells onto the tissue membrane while gluing cells to each other. In contrast, mesenchymal cells do not "express" E-cadherin, which allows them to move freely.

Another piece of the puzzle was already in place: a transcription factor known as "snail" was found to control the gene that produces the E-cadherin protein. Snail turns off E-cadherin expression, thus freeing epithelial cell from its tethers. So the question Hung and his research team explored is: what regulates snail? What "tells" snail to turn off E-cadherin? "Cells without E-cadherin are not stuck to each other any more and can move, so we looked for the regulator of snail," Hung says.

Through a series of experiments, they found that the GSK-3ß enzyme controls snail. It does this by directing snail out of the cell’s nucleus (where proteins are located) and into the cell’s cytoplasm, where it is then degraded. "This enzyme tells the snail transcription factor to go to the wrong place, where it is then destroyed," Hung says.

So when GSK-3ß controls the action of snail, a cancer cell continues to produce E-cadherin and retains all the properties of a fixed epithelial cell, the researchers discovered. Tumor cells in which GSK-3ß activity is repressed become unanchored, Hung says, suggesting that a therapy that bolsters GSK-3ß may repress the ability of cancer to spread.

Hung and his group also say that known cancer pathways, such as those that involve the epidermal growth factor receptor (EGFR) have been shown to inhibit the GSK-3ß enzyme. "So this all makes sense. We have mechanistically shown how a signaling pathway known to promote cancer development can also promote metastasis," he says. "Now we have to work on ways to inhibit that process."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>