Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switch found that allows cancer cells to become mobile

28.09.2004


Researchers at The University of Texas M. D. Anderson Cancer Center have figured out a key molecular step by which a cancer cell can unhook itself from the mesh weave of other cancer cells in a tumor, and move away to a different part of the body - the process, known as metastasis, that makes cancer so dangerous.



Describing what they call a critical "molecular switch" - detailed in the advance online edition of the journal Nature Cell Biology - the researchers say the door is now open to designing new ways to block that metastasis. "It always has been a mystery as to what allows a cancer cell to become mobile and move away from a tumor, but now we have found a very interesting mechanism that explains it," says the study’s lead author, Mien-Chie Hung, Ph.D., a professor and chair of the Department of Molecular and Cellular Oncology. That switch, in the form of an enzyme known as GSK-3ß, which is known to alter the function of proteins, may "offer us an anticancer strategy to pursue," Hung says.

Most cancers are of the "solid tumor" variety, and are made up of epithelial cells - those which make up the membranous tissue covering organs and other internal surfaces of the body. Although epithelial cells are firmly fixed to each other in a network that makes up tissue, researchers know from the study of developmental biology that embryonic epithelial cells have the ability to move. To do that, epithelial cells take on the characteristics of what are known as "mesenchymal" cells, those that develop into connective tissue and blood vessel cells, among other tissue types. They are capable of forming collagen fibers that allows them to "creep along" to where they are needed during development.


This process, known as "epithelial-mesenchymal transition (EMT)," has recently been observed in cancer progression, Hung says. "It was discovered that the increased motility and invasiveness of cancer cells resembles the EMT that occurs during embryonic development," he says. "And since about 90 percent of cancer deaths result from local invasion and distant metastasis of tumor cells, an insight into how this process works in cancer has been urgently needed."

Some of this transition process in cancer cells already has been described, Hung says. What has been known is that epithelial cells have a lot of protein known as E-cadherin, which act like anchors, fixing the cells onto the tissue membrane while gluing cells to each other. In contrast, mesenchymal cells do not "express" E-cadherin, which allows them to move freely.

Another piece of the puzzle was already in place: a transcription factor known as "snail" was found to control the gene that produces the E-cadherin protein. Snail turns off E-cadherin expression, thus freeing epithelial cell from its tethers. So the question Hung and his research team explored is: what regulates snail? What "tells" snail to turn off E-cadherin? "Cells without E-cadherin are not stuck to each other any more and can move, so we looked for the regulator of snail," Hung says.

Through a series of experiments, they found that the GSK-3ß enzyme controls snail. It does this by directing snail out of the cell’s nucleus (where proteins are located) and into the cell’s cytoplasm, where it is then degraded. "This enzyme tells the snail transcription factor to go to the wrong place, where it is then destroyed," Hung says.

So when GSK-3ß controls the action of snail, a cancer cell continues to produce E-cadherin and retains all the properties of a fixed epithelial cell, the researchers discovered. Tumor cells in which GSK-3ß activity is repressed become unanchored, Hung says, suggesting that a therapy that bolsters GSK-3ß may repress the ability of cancer to spread.

Hung and his group also say that known cancer pathways, such as those that involve the epidermal growth factor receptor (EGFR) have been shown to inhibit the GSK-3ß enzyme. "So this all makes sense. We have mechanistically shown how a signaling pathway known to promote cancer development can also promote metastasis," he says. "Now we have to work on ways to inhibit that process."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>