Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified master gene key in baby’s first breath

28.09.2004


Findings could have implications for treating lung disease



Researchers at Cincinnati Children’s Hospital Medical Center have identified a master gene that controls the first breath a newborn infant takes. The findings could have implications for treating premature babies and children and adults with lung disease or lung injury. While other genes have been identified as having roles in lung development, this master gene, called Foxa2, controls key factors that allow the lungs of a fetus to develop fully and eventually breathe air. While Foxa2 was previously known to exist, its role in lung maturation and function at birth were not known.

When Foxa2 is missing in newborn mice, respiratory distress syndrome and in many cases, death, was almost certain to follow, said Jeffrey A. Whitsett, MD, chief of Neonatology, Perinatal and Pulmonary Biology at Cincinnati Children’s and senior author of the study that appears in the October 5 issue of the Proceedings of the National Academy of Sciences (PNAS). "It was surprising to us that a single gene was able to orchestrate so many other aspects of lung function we know are critical for survival at the time of birth. The discovery of this gene and understanding of how it works could lead to new treatments for premature infants and for children and adults who suffer from lung disease or injury," he said.


Because lungs do not fully mature until the last trimester of gestation, when an infant is born prematurely, the lungs are not fully developed and lack the necessary amount of surfactant needed to keep the lungs working properly. Surfactant is a natural chemical found in the lungs that prevents alveoli - the tiny airways in the lungs - from collapsing and in turn allows the lungs to open when the newborn starts to breath. The absence of surfactant causes respiratory distress syndrome within hours of birth. "We showed that Foxa2 regulates a group of genes that stabilize surfactant production, which is required for the transition from the womb to breathing air and to protect the lungs from disease, bacterial infection and other disease and injury," Dr. Whitsett said.

Foxa2 has an important role in the development of surfactant. It resides in the respiratory epithelial cells, which combines surfactant proteins and lipids (essential fat), which in turn produces surfactant.

Researchers bred mice with and without the Foxa2 gene. When the gene was deleted, the knockout mice developed all the signs and symptoms of respiratory distress syndrome on the first day of life and died within hours of birth. The few knockout mice that did survive, developed asthma-like symptoms and emphysema later in life. On the other hand, when Foxa2 was fully intact, the newborn mice survived normally.

Foxa2 is different from other genes because it is a master gene: it controls how other genes work. For example, in the knockout mice, genes expressed in surfactant proteins and genes involved in lipid metabolism, were directly influenced by the absence of Foxa2.

Researchers found that when the Foxa2 gene was deleted, the Foxa1 gene was expressed more strongly, perhaps in an effort to compensate for the absence of the parent gene, Dr. Whitsett said. Still, the Foxa1 was not strong enough to support the development of sustainable healthy lungs in the mice.

According to the March of Dimes, one in eight infants in the U.S. are born prematurely. Furthermore, approximately 24 percent of all infants born prematurely will die in the first month of life and in most cases, it is as a result of respiratory distress syndrome.

Steroids have become one of the most common courses of treatment for infants with underdeveloped lungs. Steroids work by stimulating lung development, but their use has been associated with side effects, such as cerebral palsy, asthma and bronchitis.

The identification of Foxa2’s role in lung development is expected to lead to new treatments for premature babies, children and adults with lung disease or lung injury.

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>