Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly identified master gene key in baby’s first breath


Findings could have implications for treating lung disease

Researchers at Cincinnati Children’s Hospital Medical Center have identified a master gene that controls the first breath a newborn infant takes. The findings could have implications for treating premature babies and children and adults with lung disease or lung injury. While other genes have been identified as having roles in lung development, this master gene, called Foxa2, controls key factors that allow the lungs of a fetus to develop fully and eventually breathe air. While Foxa2 was previously known to exist, its role in lung maturation and function at birth were not known.

When Foxa2 is missing in newborn mice, respiratory distress syndrome and in many cases, death, was almost certain to follow, said Jeffrey A. Whitsett, MD, chief of Neonatology, Perinatal and Pulmonary Biology at Cincinnati Children’s and senior author of the study that appears in the October 5 issue of the Proceedings of the National Academy of Sciences (PNAS). "It was surprising to us that a single gene was able to orchestrate so many other aspects of lung function we know are critical for survival at the time of birth. The discovery of this gene and understanding of how it works could lead to new treatments for premature infants and for children and adults who suffer from lung disease or injury," he said.

Because lungs do not fully mature until the last trimester of gestation, when an infant is born prematurely, the lungs are not fully developed and lack the necessary amount of surfactant needed to keep the lungs working properly. Surfactant is a natural chemical found in the lungs that prevents alveoli - the tiny airways in the lungs - from collapsing and in turn allows the lungs to open when the newborn starts to breath. The absence of surfactant causes respiratory distress syndrome within hours of birth. "We showed that Foxa2 regulates a group of genes that stabilize surfactant production, which is required for the transition from the womb to breathing air and to protect the lungs from disease, bacterial infection and other disease and injury," Dr. Whitsett said.

Foxa2 has an important role in the development of surfactant. It resides in the respiratory epithelial cells, which combines surfactant proteins and lipids (essential fat), which in turn produces surfactant.

Researchers bred mice with and without the Foxa2 gene. When the gene was deleted, the knockout mice developed all the signs and symptoms of respiratory distress syndrome on the first day of life and died within hours of birth. The few knockout mice that did survive, developed asthma-like symptoms and emphysema later in life. On the other hand, when Foxa2 was fully intact, the newborn mice survived normally.

Foxa2 is different from other genes because it is a master gene: it controls how other genes work. For example, in the knockout mice, genes expressed in surfactant proteins and genes involved in lipid metabolism, were directly influenced by the absence of Foxa2.

Researchers found that when the Foxa2 gene was deleted, the Foxa1 gene was expressed more strongly, perhaps in an effort to compensate for the absence of the parent gene, Dr. Whitsett said. Still, the Foxa1 was not strong enough to support the development of sustainable healthy lungs in the mice.

According to the March of Dimes, one in eight infants in the U.S. are born prematurely. Furthermore, approximately 24 percent of all infants born prematurely will die in the first month of life and in most cases, it is as a result of respiratory distress syndrome.

Steroids have become one of the most common courses of treatment for infants with underdeveloped lungs. Steroids work by stimulating lung development, but their use has been associated with side effects, such as cerebral palsy, asthma and bronchitis.

The identification of Foxa2’s role in lung development is expected to lead to new treatments for premature babies, children and adults with lung disease or lung injury.

Amy Reyes | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>