Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified master gene key in baby’s first breath

28.09.2004


Findings could have implications for treating lung disease



Researchers at Cincinnati Children’s Hospital Medical Center have identified a master gene that controls the first breath a newborn infant takes. The findings could have implications for treating premature babies and children and adults with lung disease or lung injury. While other genes have been identified as having roles in lung development, this master gene, called Foxa2, controls key factors that allow the lungs of a fetus to develop fully and eventually breathe air. While Foxa2 was previously known to exist, its role in lung maturation and function at birth were not known.

When Foxa2 is missing in newborn mice, respiratory distress syndrome and in many cases, death, was almost certain to follow, said Jeffrey A. Whitsett, MD, chief of Neonatology, Perinatal and Pulmonary Biology at Cincinnati Children’s and senior author of the study that appears in the October 5 issue of the Proceedings of the National Academy of Sciences (PNAS). "It was surprising to us that a single gene was able to orchestrate so many other aspects of lung function we know are critical for survival at the time of birth. The discovery of this gene and understanding of how it works could lead to new treatments for premature infants and for children and adults who suffer from lung disease or injury," he said.


Because lungs do not fully mature until the last trimester of gestation, when an infant is born prematurely, the lungs are not fully developed and lack the necessary amount of surfactant needed to keep the lungs working properly. Surfactant is a natural chemical found in the lungs that prevents alveoli - the tiny airways in the lungs - from collapsing and in turn allows the lungs to open when the newborn starts to breath. The absence of surfactant causes respiratory distress syndrome within hours of birth. "We showed that Foxa2 regulates a group of genes that stabilize surfactant production, which is required for the transition from the womb to breathing air and to protect the lungs from disease, bacterial infection and other disease and injury," Dr. Whitsett said.

Foxa2 has an important role in the development of surfactant. It resides in the respiratory epithelial cells, which combines surfactant proteins and lipids (essential fat), which in turn produces surfactant.

Researchers bred mice with and without the Foxa2 gene. When the gene was deleted, the knockout mice developed all the signs and symptoms of respiratory distress syndrome on the first day of life and died within hours of birth. The few knockout mice that did survive, developed asthma-like symptoms and emphysema later in life. On the other hand, when Foxa2 was fully intact, the newborn mice survived normally.

Foxa2 is different from other genes because it is a master gene: it controls how other genes work. For example, in the knockout mice, genes expressed in surfactant proteins and genes involved in lipid metabolism, were directly influenced by the absence of Foxa2.

Researchers found that when the Foxa2 gene was deleted, the Foxa1 gene was expressed more strongly, perhaps in an effort to compensate for the absence of the parent gene, Dr. Whitsett said. Still, the Foxa1 was not strong enough to support the development of sustainable healthy lungs in the mice.

According to the March of Dimes, one in eight infants in the U.S. are born prematurely. Furthermore, approximately 24 percent of all infants born prematurely will die in the first month of life and in most cases, it is as a result of respiratory distress syndrome.

Steroids have become one of the most common courses of treatment for infants with underdeveloped lungs. Steroids work by stimulating lung development, but their use has been associated with side effects, such as cerebral palsy, asthma and bronchitis.

The identification of Foxa2’s role in lung development is expected to lead to new treatments for premature babies, children and adults with lung disease or lung injury.

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>