Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Punching the timeclock of life


Ten years ago, Valter Longo had an inkling of a theory of aging that is now challenging the dogma of one of science’s heavyweights – Charles Darwin.

From graduate school to a career as an assistant professor in the USC Leonard Davis School of Gerontology and the USC College of Letters, Arts and Sciences, Longo’s ideas were questioned by peers and students alike as he explored a new way to look at aging that directly opposes principles set forth by Darwin in his theory of natural selection.

It has long been accepted that natural selection happens on the individual level – the better suited an organism is to its environment, the more likely it is to reproduce, forcing the species to change, or evolve, over time. Longo’s theory, in contrast, hinges on a process called "group selection," believed by most scientists to be wrong because it proposes that selection happens at the group level rather than the individual .

The gerontologist also rejects the commonly accepted theory that aging happens by chance and that, like a car, an organism runs well until it starts to breaks down and eventually just stops working. In research published in the Sept. 27 edition of the Journal of Cell Biology, Longo proposes that aging is programmed so that the majority of a population dies prematurely to provide nutrients for the sake of a few individuals who have acquired the genetic mutations that increase their chances of reproduction.

The research is based on observations of programmed aging in baker’s yeast by Longo and co-author Paola Fabrizio. Scientists use baker’s yeast to study aging because the molecular pathway that regulates its longevity is similar to that in other organisms, such as mice and possibly humans, Longo said. "Basically, it is the first demonstration, to our knowledge, that aging is programmed and altruistic," Longo said. "The organisms we have studied die long before they have to in order to provide nutrients for ’mutants’ generated within their own population. Thus, billions of organisms die early so that a few better-adapted individuals can grow."

What is even more striking, he said, is that the findings raise the possibility that the same process happens in humans, with many of us dying before we have to. "Programmed human aging is just a possibility. We don’t know whether it’s true yet or not," he said. "But if aging is programmed in yeast, and the pathway is very similar, then isn’t it possible that humans also die earlier than they have to?"

Longo said he realizes that this theory goes against the fundamental theories of evolution, which is why he took 10 years to publish, combing through scientific papers dating back to the 1870s to learn about the genesis of the theory of natural selection and speaking with prominent evolutionary biologists about his ideas. "I wanted them to tell me, ’No, you’re wrong and here’s why.’ I never got that," he said.

Longo said there are many questions that have yet to be answered through theoretical studies and a closer look at aging in humans and mammals. "We’re not saying Darwin was wrong. We’re just saying that there appear to be some big missing pieces in his theory," Longo said. "We’re also not saying that humans are, for sure, undergoing programmed aging. But, most likely, most organisms undergo programmed longevity. Life is programmed. Whether death is programmed or not is yet to be determined."

Usha Sutliff | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>