Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Punching the timeclock of life

27.09.2004


Ten years ago, Valter Longo had an inkling of a theory of aging that is now challenging the dogma of one of science’s heavyweights – Charles Darwin.



From graduate school to a career as an assistant professor in the USC Leonard Davis School of Gerontology and the USC College of Letters, Arts and Sciences, Longo’s ideas were questioned by peers and students alike as he explored a new way to look at aging that directly opposes principles set forth by Darwin in his theory of natural selection.

It has long been accepted that natural selection happens on the individual level – the better suited an organism is to its environment, the more likely it is to reproduce, forcing the species to change, or evolve, over time. Longo’s theory, in contrast, hinges on a process called "group selection," believed by most scientists to be wrong because it proposes that selection happens at the group level rather than the individual .


The gerontologist also rejects the commonly accepted theory that aging happens by chance and that, like a car, an organism runs well until it starts to breaks down and eventually just stops working. In research published in the Sept. 27 edition of the Journal of Cell Biology, Longo proposes that aging is programmed so that the majority of a population dies prematurely to provide nutrients for the sake of a few individuals who have acquired the genetic mutations that increase their chances of reproduction.

The research is based on observations of programmed aging in baker’s yeast by Longo and co-author Paola Fabrizio. Scientists use baker’s yeast to study aging because the molecular pathway that regulates its longevity is similar to that in other organisms, such as mice and possibly humans, Longo said. "Basically, it is the first demonstration, to our knowledge, that aging is programmed and altruistic," Longo said. "The organisms we have studied die long before they have to in order to provide nutrients for ’mutants’ generated within their own population. Thus, billions of organisms die early so that a few better-adapted individuals can grow."

What is even more striking, he said, is that the findings raise the possibility that the same process happens in humans, with many of us dying before we have to. "Programmed human aging is just a possibility. We don’t know whether it’s true yet or not," he said. "But if aging is programmed in yeast, and the pathway is very similar, then isn’t it possible that humans also die earlier than they have to?"

Longo said he realizes that this theory goes against the fundamental theories of evolution, which is why he took 10 years to publish, combing through scientific papers dating back to the 1870s to learn about the genesis of the theory of natural selection and speaking with prominent evolutionary biologists about his ideas. "I wanted them to tell me, ’No, you’re wrong and here’s why.’ I never got that," he said.

Longo said there are many questions that have yet to be answered through theoretical studies and a closer look at aging in humans and mammals. "We’re not saying Darwin was wrong. We’re just saying that there appear to be some big missing pieces in his theory," Longo said. "We’re also not saying that humans are, for sure, undergoing programmed aging. But, most likely, most organisms undergo programmed longevity. Life is programmed. Whether death is programmed or not is yet to be determined."

Usha Sutliff | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>