Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preclinical safety study shows adipose-derived stem cells improve heart function after heart attack

27.09.2004


MacroPore Biosurgery, Inc. (Frankfurt: XMP) today announced that adipose tissue-derived regenerative cells improved heart function following myocardial infarction in a large-animal preclinical safety study. This study, performed in swine, confirms previous preclinical work by MacroPore Biosurgery and others suggesting that the Company’s proprietary, patented technology is safe and may be clinically useful in treating heart disease. The goal of the study was to determine the safety of adipose tissue-derived regenerative cells delivered into coronary circulation without cell culture. The results were presented in a poster presentation at the Transcatheter Cardiovascular Therapeutics 2004 meeting in Washington D.C. (Abstract # 550778).



Intracoronary infusion of adipose tissue-derived regenerative cells 48 hours after infarction was found to be safe, with all 13 swine surviving to the 6-month follow-up period. Additionally, the study demonstrated a statistically significant improvement in left ventricular ejection fraction (LVEF) at six-months post-infarction in the treated group over the control group, as measured by 2D echocardiography. Similar trends were observed by measuring LVEF via cineangiography, as provided in the data table below. LVEF is a measure of the heart’s ability to pump oxygenated blood throughout the body. It specifically determines the fraction of blood that is ejected out of the left ventricle with each contraction.

"We are encouraged by the findings from this preclinical study, which suggest that delivery of autologous, adipose tissue-derived, regenerative cells is safe and effective in preserving left ventricular systolic function," said John K. Fraser, Vice President, Research and Technology, of MacroPore Biosurgery. "Despite the fact that this study was designed primarily to evaluate the safety of dose escalation in limited infarcts, we observed statistically significant improvements in heart function. Additional swine studies are underway to better understand and optimize dosing and efficacy in order to lay the foundation for clinical work."


MacroPore Biosurgery and other investigators from around the world have shown that adipose tissue is a rich source of autologous regenerative cells. Adipose tissue-derived regenerative cells consist of (1) adult stem cells, (2) endothelial progenitor cells (blood vessel forming cells) and (3) other growth factor producing cells (tissue growth and repair promoting cells). These cells have practical benefits over other sources of regenerative-capable cells such as bone marrow, skeletal muscle, embryonic and fetal tissue and rarer sources of stem cells. Additionally, regenerative cells from a patient’s own adipose tissue (autologous-use) present no risk of rejection or disease transmission and avoid ethical concerns.

The methods used in the pre-clinical study are as follows: Infarcts were induced in 13 juvenile swine by balloon occlusion of the mid left anterior descending artery. Forty-eight hours after the infarction, adipose cells were harvested through a lipectomy, autologous regenerative cells were isolated, and the pigs were randomized to either an intracoronary infusion of saline (control) or 40-140x106 (mean 67.5x106) regenerative cells (experimental) infused distal to the site of occlusion. All 13 pigs (7 experimental, 6 control), survived to the 6-month follow up period. Left ventricular cineangiography and 2D echocardiography were performed at baseline, immediately post-infarction, and at six months. The table below summarizes the study results:

2D Echocardiography

LVEF at Baseline
Treated = 46%
Control = 47%

LVEF at 6-Months
Treated = 49%
Control = 38%

Change in LVEF
Treated = + 3%
Control = - 9%

Standard Deviation
Treated = + 6%
Control = + 5%

P-value = 0.01

Cineangiography

LVEF at Baseline
Treated = 51%
Control = 49%

LVEF at 6-Months
Treated = 55%
Control = 47%

Change in LVEF
Treated = + 4%
Control = - 2%

Standard Deviation
Treated = + 5%
Control = + 7%

P-value = 0.16

This press release may include forward-looking statements regarding events and trends which may affect MacroPore Biosurgery’s future operating results and financial position. Such statements are subject to risks and uncertainties that could cause MacroPore Biosurgery’s actual results and financial position to differ materially. These risks and uncertainties are described (under the heading "Risk Factors") in our 2003 Form 10-K annual report for the year ended December 31, 2003, which is available on our web site. MacroPore Biosurgery assumes no responsibility to publicly release the results of any revision of forward-looking statements to reflect events, trends or circumstances after the date they are made.

Tom Baker | EurekAlert!
Further information:
http://www.macropore.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>