Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create nanotubes that change colors, form ’nanocarpet’ and kill bacteria

27.09.2004


Implications include developing materials that both detect and kill biological agents



University of Pittsburgh researchers have synthesized a simple molecule that not only produces perfectly uniform, self-assembled nanotubes but creates what they report as the first "nanocarpet," whereby these nanotubes organize themselves into an expanse of upright clusters that when magnified a million times resemble the fibers of a shag rug. Moreover, unlike other nanotube structures, these tubes display sensitivity to different agents by changing color and can be trained to kill bacteria, such as E. coli, with just a jab to its cell membrane.

How a mere single-step synthesis of a hydrocarbon and a simple salt compound produced these unique nanotube structures with antimicrobial capability is described in a paper posted on the Web site for the Journal of the American Chemical Society. The findings have implications for developing products that can simultaneously detect and kill biological weapons.


"In these nanotube structures, we have created a material that has the ability to sense their environment. The work is an outgrowth of our interest in developing materials that both sense and decontaminate chemical or biological weapons," said senior author Alan J. Russell, Ph.D., professor of surgery at the University of Pittsburgh School of Medicine and director of the university’s McGowan Institute for Regenerative Medicine.

The research, funded by the Department of Defense’s Army Research Office, has as its goal the development of a paint that in the event of biological or chemical agents being deployed would change color and simultaneously destroy the deadly substances.

The researchers thought that by combining a chemical structure called a quarternary ammonium salt group, known for its ability to disrupt cell membranes and cause cell death, with a hydrocarbon diacetylene, which can change colors when appropriately formulated, the resulting molecule would have the desired properties of both biosensor and biocide. Remarkably, in addition to being able to kill cells, the resulting reaction mixture had the ability to self assemble into beautiful nanotubes of uniform structure. After searching for what was forming the tubes, the researchers discovered that synthesis of a secondary salt and diacetylene, thereby creating a lipid molecule, also resulted in production of absolutely pure self-assembling nanotubes, all having the same diameter (89 nanometers) and wall thickness (27 nanometers). By comparison, a human hair is about 1,000 times wider.

When dried from water and other solvents, and under magnification, these nanostructures look much like a heaping serving of Kraft macaroni or ziti pasta. Incredibly, when coaxed with simple processing, the tubes align into the more formal pattern of a nanocarpet. Just like any rug, a backing, also self-assembled from the same material, holds it all together. The nanocarpet measures about one micrometer in height, approximately the same height as the free-form nanotubes.

"This alignment of nanotubes in the absence of a template is an accomplishment that has eluded researchers," said Dr. Russell, who also is a professor of chemical and bioengineering at the University of Pittsburgh School of Engineering.

"To our knowledge, the remarkable self-assembly of this inexpensive and simple lipid is unprecedented and represents an important step toward rational design of bioactive nanostructures. In addition, because they form within hours under room-temperature conditions, the significant costs of synthesizing carbon nanotubes can be reduced," explained Sang Beom Lee, Ph.D., research assistant professor of bioengineering in the School of Engineering, who is listed as first author.

To test the nanostructure’s potential as a biosensor and antimicrobial, the authors conducted studies using the water-based nanotubes. Normally a neutral color, when exposed to ultraviolet light the nanotubes changed to a permanent deep blue. The process also chemically altered the nanotubes so that they became polymerized, giving them a more firm structure. Polymerized, these nanotubes could change from blue to other colors, depending on its exposure to different materials. For instance, in tests with acids and detergents, they turned red or yellow.

The most critical tests, say the researchers, were those involving E. coli, which were conducted to assess the material’s interactions with living cells. In the presence of E. coli, some strains of which are food-borne pathogens, the nanotubes turned shades of red and pink. Moreover, with the aid of an electron microscope, the researchers observed the tubes piercing the membranes of the bacteria like a needle being inserted into the cell. Both the polymerized (those that can change color) and the unpolymerized nanotube structures were effective antimicrobials, completely killing all the E. coli within an hour’s time.

"We are very encouraged by these results and we will be continuing our investigations of this novel material in collaboration with our colleagues here at the University of Pittsburgh and the U.S. Army Research Office," added Dr. Russell.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>