Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umbilical cord blood-derived stem cells given intravenously reduce stroke damage

27.09.2004


Stem cells taken from umbilical cord blood, then given intravenously along with a drug known to temporarily breach the brain’s protective barrier, can dramatically reduce stroke size and damage, Medical College of Georgia and University of South Florida researchers say.

"What we found was interesting, phenomenal really," says Dr. Cesario V. Borlongan, neuroscientist and lead author of the study published in the October issue of the American Heart Association journal, Stroke.

Researchers first gave the drug, mannitol, to provide temporary passage through the blood-brain barrier then transfused human umbilical cord blood cells into a stroke animal model. When used in the first hours and days following a stroke, stroke size decreased by 40 percent and resulting disability was significantly reduced. "We have two potential routes of delivery, intravenously through the jugular vein or directly transplanting the cells into the brain," says Dr. Borlongan. Initial studies comparing the two approaches showed the intravenous approach ineffective until researchers added mannitol.



"Intravenous delivery of (human umbilical cord blood cells) poses an efficient and non-invasive cell therapy for (central nervous system) disorders characterized by a narrow therapeutic window," the researchers write. "A multi-drug treatment for stroke may be realized via a cell-based therapy that involves routine clinical IV infusion of stem/progenitor cells allowing the biological release of a cocktail of trophic factors into the brain."

Although no evidence could be found of the low-dose umbilical cord blood stem cells themselves in the brain three days after the treatment, evidence of neuroprotection was clear, Dr. Borlongan says. "The critical factors we have seen elevated in this stroke animal model are the neurotrophic factors."

"This is an important finding because it shows that umbilical cord blood cells do not have to become new brain cells to protect the brain," says Dr. Paul R. Sanberg, neuroscientist at the University of South Florida and a co-author on the study. Human umbilical cord blood stem cells used for the study were obtained from Saneron CCEL Therapeutics, Inc., in Tampa, Fla., a USF spin-off company researching clinical applications for cord blood cells.

An article in the same issue of Stroke by the USF researchers led by Dr. Alison Willing, neuroscientist, shows that 10 times the number of stem cells or more would be needed to produce similar results if cells were given intravenously without any help crossing the blood-brain barrier.

The MCG-led study used 200,000 umbilical cord blood cells and a low dose of mannitol, a sugar alcohol and diuretic whose uses include helping chemotherapeutic agents reach the brain. The USF study showed a dose-response relationship with significant recovery in behavioral performance when 1 million or more cells were given, Drs. Willing and Sanberg and their colleagues report.

"The advances we are seeing here are with mannitol, you can deliver a smaller number of cells and it can protect against stroke," Dr. Borlongan says. "It can reduce the size of infarction; it can lead to behavioral improvement," an important implication for clinical applications because stem cells are difficult to harvest. By using mannitol or similar drugs, it may be possible to treat stroke patients in the future with cells from only a few umbilical cords, adds Dr. Sanberg.

The Stroke paper also explored how stem cells provide neuroprotection. The researchers speculated it was by providing the large influx of nourishing neurotrophic factors secreted by the stem cells. To test that theory, they looked at what happened when they used antibodies that negated some of the factors. "When we blocked the neurotrophic factors, it blocked the positive effect," Dr. Borlongan says.

The study also looked at mannitol as a therapy because of previous reports it reduces cerebral swelling and stroke damage. Researchers found that at the same low dose used to accompany the stem cells, mannitol alone was ineffective. "The dosage we are using is probably 10 times lower than the one showing mannitol itself to be protective," Dr. Borlongan says. But those higher doses come with higher risks as tight cell junctions that prevent many molecules from reaching the brain relax for longer periods, leaving the brain susceptible to problems such as infection. Drs. Borlongan and Willing are consultants and Dr. Sanberg is cofounder of Saneron CCEL Therapeutics, Inc.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu
http://www.usf.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>