Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spun from bone

24.09.2004


PNNL-USC team discovers how protein in teeth controls bone-like crystals to form steely enamel


Sculpting Enamel From Bone: Top right: an electron microscope captures the weave structure of the long crystal stands that give enamel its strength. Bottom: A model based on nuclear magnetic resonance data derived at Pacific Northwest National Laboratory that shows how an active portion of the enamel-building protein, an amelogenin called LRAP, interacts with the crystal hydroxyapatite, or HAP, used by the body to engineer both bone and enamel. An isotopically labeled amino acid group (yellow, just left of center) in LRAP is near the HAP surface, a closeness that appears to encourage full interaction of protein with HAP that enables the protein to dictate the pattern of crystal formation.



Bone and enamel start with the same calcium-phosphate crystal building material but end up quite different in structure and physical properties. The difference in bone and enamel microstructure is attributed to a key protein in enamel that molds crystals into strands thousands of times longer and much stronger than those in bone. The dimension of an enamel strand is 100,000 by 50 by 25 nanometers; bone is 35 by 25 by 4 nanometers.

But how that protein achieves this feat of crystal-strand shape-shifting has remained elusive. Today, scientists have reported the first direct observation of how this protein, amelogenin, interacts with crystals like those in bone to form the hard, protective enamel of teeth.


The study, published by a team from the Department of Energy’s Pacific Northwest National Laboratory and the University of Southern California on Friday (Sept. 24) in Journal of Biological Chemistry, identifies the region of the protein that interacts with the enamel crystals. The results explain how 100 nanometer spheres of amelogenin cluster like bowling balls around developing enamel crystals, forcing the crystals to elongate into thin, weaved strands that endow enamel with the strength of steel.

The discovery is a milestone for those who would wish to nano-engineer tissues, implants and synthetic coatings based on nature’s rules. “The proteins determine the crystal structure,” said Wendy J. Shaw, lead author and PNNL staff scientist. “Like bone, teeth are made of HAP, but the proteins present when teeth form create enamel, a material with entirely different properties from bone. If you can control the interactions between proteins and crystals, the same principal can be applied to nano-patterning and nano-building.”

Shaw’s co-authors are PNNL chief scientist Allison A. Campbell and Michael L. Paine and Malcolm L. Snead of USC’s Center for Craniofacial Molecular Biology in Los Angeles.

Earlier studies showed that mutated mice without amelogenin produced defective enamel. Other experiments set out to pinpoint the part of the protein responsible, pointing researchers toward the protein’s so-called carboxyl terminus—a region made up of many negatively charged amino acids. “People concentrated on this region,” according to Shaw, “because it has several negatively charged groups that are generally thought to interact with the positively charged groups in hydroxyapatite’’—or HAP, the crystals that make up bone and enamel.

A series of experiments confirmed that this region played an important role in shaping HAP crystals. Armed with this information, Shaw and colleagues set out to prove that this carboxyl group was indeed the business end of the protein.

To do that, they selected a form of amelogenin called LRAP and isotopically labeled one of the charged amino acids thought to be near LRAP’s surface. They put the protein into contact with hydroxyapatite, a proxy for developing enamel crystals, then took its picture. In this case, the “camera” was a powerful nuclear magnetic resonance instrument capable of recording the positions of tagged protein atoms in relation to the forming HAP crystals. “There are only a handful of labs capable of doing this,” Shaw said, “and there are more proteins than there are people to look at them all.”

The NMR data complement previous results, suggesting that protein’s function is to interact with HAP specifically. The carboxyl terminus of the protein is later cleaved by an enzyme, disrupting the protein-HAP interaction and allowing the long, thin crystals to grow outward as well, in three dimensions. The protein is cleaved further still, Shaw said, and by the time the process is complete, enamel is 99.9 percent crystal and no protein.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>